Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Klinefelter syndrome in clinical practice

Abstract

Klinefelter syndrome is the most common sex-chromosome disorder; it affects approximately one in every 660 men. This syndrome is characterized by the presence of one or more extra X chromosomes, and the karyotype 47,XXY is the most prevalent type. The 'prototypic' man with Klinefelter syndrome has traditionally been described as tall, with narrow shoulders, broad hips, sparse body hair, gynecomastia, small testicles, androgen deficiency, azoospermia and decreased verbal intelligence. A less distinct phenotype has, however, been described. Klinefelter syndrome is an underdiagnosed condition; only 25% of the expected number of patients are diagnosed, and of these only a minority are diagnosed before puberty. Patients with Klinefelter syndrome should be treated with lifelong testosterone supplementation that begins at puberty, to secure proper masculine development of sexual characteristics, muscle bulk and bone structure, and to prevent the long-term deleterious consequences of hypogonadism; however, the optimal testosterone regimen for patients with Klinefelter syndrome remains to be established.

Key Points

  • Klinefelter syndrome is the most common sex-chromosome aberration (present in 1 in 660 men), but remains underdiagnosed

  • Common clinical findings in patients with Klinefelter syndrome include small testes (<4 ml), azoospermia, hypergonadotrophic hypogonadism, learning disabilities, gynecomastia, and cryptorchidism

  • Patients with Klinefelter syndrome have an increased risk of developing diabetes, metabolic syndrome, osteoporosis, breast cancer, mediastinal germ-cell tumors and non-Hodgkin's lymphoma

  • Treatment for patients with Klinefelter syndrome can include referral to a speech therapist if necessary (in cases where speech development is delayed) and testosterone treatment from puberty (when gonadotropin levels rise)

  • Infertility in some men with Klinefelter syndrome can be overcome by use of assisted reproduction techniques: testicular sperm extraction and subsequent intracytoplasmatic sperm injection

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The prevalence of postnatal diagnosis of Klinefelter syndrome in Denmark in the year 2000
Figure 2: The vicious circle of hypogonadism, abdominal adiposity and insulin resistance has direct and indirect consequences

Similar content being viewed by others

References

  1. Klinefelter H et al. (1942) Syndrome characterized by gynecomastia, aspermatogenesis without a-leydigsm and increased secretion of follicle-stimulating hormone. J Clin Endocrinol Metab 2: 615–622

    Article  CAS  Google Scholar 

  2. Jacobs PA and Strong JA (1959) A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 183: 302–303

    Article  CAS  Google Scholar 

  3. Maclean N and Mitchell JM (1962) A survey of sex-chromosome abnormalities among 4,514 mental defectives. Lancet 1: 293–296

    Article  CAS  Google Scholar 

  4. Nielsen J et al. (1982) Follow-up until age 7 to 11 of 25 unselected children with sex chromosome abnormalities. Birth Defects Orig Artic Ser 18: 61–97

    CAS  PubMed  Google Scholar 

  5. Robinson A et al. (1990) Sex chromosome aneuploidy: the Denver Prospective Study. Birth Defects Orig Artic Ser 26: 59–115

    CAS  PubMed  Google Scholar 

  6. Ratcliffe S (1999) Long-term outcome in children of sex chromosome abnormalities. Arch Dis Child 80: 192–195

    Article  CAS  Google Scholar 

  7. Smyth CM and Bremner WJ (1998) Klinefelter syndrome. Arch Intern Med 158: 1309–1314

    Article  CAS  Google Scholar 

  8. Simpson JL et al. (2003) Klinefelter syndrome: expanding the phenotype and identifyig new research directions. Genet Med 5: 460–468

    Article  Google Scholar 

  9. Swerdlow AJ et al. (2005) Mortality in patients with Klinefelter syndrome in Britain: a cohort study. J Clin Endocrinol Metab 90: 6516–6522

    Article  CAS  Google Scholar 

  10. Jacobs PA et al. (1988) Klinefelter's syndrome: an analysis of the origin of the additional sex chromosome using molecular probes. Ann Hum Genet 52 (Pt 2): 93–109

    Article  Google Scholar 

  11. MacDonald M et al. (1994) The origin of 47,XXY and 47,XXX aneuploidy: heterogeneous mechanisms and role of aberrant recombination. Hum Mol Genet 3: 1365–1371

    Article  CAS  Google Scholar 

  12. Bojesen A et al. (2003) Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab 88: 622–626

    Article  CAS  Google Scholar 

  13. Hook EB (1981) Rates of chromosome abnormalities at different maternal ages. Obstet Gynecol 58: 282–285

    CAS  PubMed  Google Scholar 

  14. Shi Q et al. (2002) Absence of age effect on meiotic recombination between human X and Y chromosomes. Am J Hum Genet 71: 254–261

    Article  CAS  Google Scholar 

  15. Zitzmann M et al. (2004) X-chromosome inactivation patterns and androgen receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J Clin Endocrinol Metab 89: 6208–6217

    Article  CAS  Google Scholar 

  16. Nielsen J and Wohlert M (1990) Sex chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Birth Defects Orig Artic Ser 26: 209–223

    CAS  PubMed  Google Scholar 

  17. Leonard MF et al. (1979) Chromosomal abnormalities in the New Haven newborn study: a prospective study of development of children with sex chromosome anomalies. Birth Defects Orig Artic Ser 15: 115–159

    CAS  PubMed  Google Scholar 

  18. Maclean N and Edin MB (1964) Sex-chromosome abnormalities in newborn babies. Lancet 1: 286–290

    Article  CAS  Google Scholar 

  19. Abramsky L and Chapple J (1997) 47,XXY (Klinefelter syndrome) and 47,XYY: estimated rates of and indication for postnatal diagnosis with implications for prenatal counseling. Prenat Diagn 17: 363–368

    Article  CAS  Google Scholar 

  20. Robinson A et al. (1979) Summary of clinical findings: profiles of children with 47,XXY, 47,XXX and 47,XYY karyotypes. Birth Defects Orig Artic Ser 15: 261–266

    CAS  PubMed  Google Scholar 

  21. Lanfranco F et al. (2004) Klinefelter's syndrome. Lancet 364: 273–283

    Article  CAS  Google Scholar 

  22. Denschlag D et al. (2004) Assisted reproductive techniques in patients with Klinefelter syndrome: a critical review. Fertil Steril 82: 775–779

    Article  Google Scholar 

  23. Muller J et al. (1995) Quantified testicular histology in boys with sex chromosome abnormalities. Int J Androl 18: 57–62

    Article  CAS  Google Scholar 

  24. Wikstrom AM et al. (2004) Klinefelter syndrome in adolescence: onset of puberty is associated with accelerated germ cell depletion. J Clin Endocrinol Metab 89: 2263–2270

    Article  Google Scholar 

  25. Christiansen P et al. (2003) Longitudinal studies of inhibin B levels in boys and young adults with Klinefelter syndrome. J Clin Endocrinol Metab 88: 888–891

    Article  CAS  Google Scholar 

  26. Salbenblatt JA et al. (1985) Pituitary–gonadal function in Klinefelter syndrome before and during puberty. Pediatr Res 19: 82–86

    Article  CAS  Google Scholar 

  27. Ross JL et al. (2005) Early androgen deficiency in infants and young boys with 47,XXY Klinefelter syndrome. Horm Res 64: 39–45

    CAS  PubMed  Google Scholar 

  28. Lahlou N et al. (2004) Inhibin B and anti-Mullerian hormone, but not testosterone levels, are normal in infants with nonmosaic Klinefelter syndrome. J Clin Endocrinol Metab 89: 1864–1868

    Article  CAS  Google Scholar 

  29. Ratcliffe SG (1982) The sexual development of boys with the chromosome constitution 47,XXY (Klinefelter's syndrome). Clin Endocrinol Metab 11: 703–716

    Article  CAS  Google Scholar 

  30. Bay K et al. (2005) Insulin-like factor 3 serum levels in 135 normal men and 85 men with testicular disorders: relationship to the luteinizing hormone–testosterone axis. J Clin Endocrinol Metab 90: 3410–3418

    Article  CAS  Google Scholar 

  31. Bojesen A et al. (2006) The metabolic syndrome is frequent in Klinefelter's syndrome and is associated with abdominal obesity and hypogonadism. Diabetes Care 29: 1591–1598

    Article  Google Scholar 

  32. Schiff JD et al. (2005) Success of testicular sperm extraction [corrected] and intracytoplasmic sperm injection in men with Klinefelter syndrome. J Clin Endocrinol Metab 90: 6263–6267

    Article  CAS  Google Scholar 

  33. Gonsalves J et al. (2005) Recombination in men with Klinefelter syndrome. Reproduction 130: 223–229

    Article  CAS  Google Scholar 

  34. Ron-El R et al. (2000) A 47,XXY fetus conceived after ICSI of spermatozoa from a patient with non-mosaic Klinefelter's syndrome: case report. Hum Reprod 15: 1804–1806

    Article  CAS  Google Scholar 

  35. Bojesen A et al. (2006) Morbidity in Klinefelter syndrome: a Danish register study based on hospital discharge diagnoses. J Clin Endocrinol Metab 91: 1254–1260

    Article  CAS  Google Scholar 

  36. Tsai EC et al. (2000) Low serum testosterone level as a predictor of increased visceral fat in Japanese-American men. Int J Obes Relat Metab Disord 24: 485–491

    Article  CAS  Google Scholar 

  37. Laaksonen DE et al. (2004) Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care 27: 1036–1041

    Article  CAS  Google Scholar 

  38. Stellato RK et al. (2000) Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts male aging study. Diabetes Care 23: 490–494

    Article  CAS  Google Scholar 

  39. Laaksonen DE et al. (2003) Sex hormones, inflammation and the metabolic syndrome: a population-based study. Eur J Endocrinol 149: 601–608

    Article  CAS  Google Scholar 

  40. Nishizawa H et al. (2002) Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes 51: 2734–2741

    Article  CAS  Google Scholar 

  41. Lanfranco F et al. (2004) Serum adiponectin levels in hypogonadal males: influence of testosterone replacement therapy. Clin Endocrinol (Oxf) 60: 500–507

    Article  CAS  Google Scholar 

  42. Diez JJ and Iglesias P (2003) The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 148: 293–300

    Article  CAS  Google Scholar 

  43. Eyben FE et al. (2005) All-cause mortality and mortality of myocardial infarction for 989 legally castrated men. Eur J Epidemiol 20: 863–869

    Article  Google Scholar 

  44. Pitteloud N et al. (2005) Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. J Clin Endocrinol Metab 90: 2636–2641

    Article  CAS  Google Scholar 

  45. Bojesen A et al. (2004) Increased mortality in Klinefelter syndrome. J Clin Endocrinol Metab 89: 3830–3834

    Article  CAS  Google Scholar 

  46. Fricke GR et al. (1984) Klinefelter's syndrome and mitral valve prolapse. An echocardiographic study in twenty-two patients. Biomed Pharmacother 38: 88–97

    CAS  PubMed  Google Scholar 

  47. Campbell WA and Price WH (1981) Venous thromboembolic disease in Klinefelter's syndrome. Clin Genet 19: 275–280

    Article  CAS  Google Scholar 

  48. Zollner TM et al. (1997) Leg ulcers in Klinefelter's syndrome—further evidence for an involvement of plasminogen activator inhibitor-1. Br J Dermatol 136: 341–344

    Article  CAS  Google Scholar 

  49. Khosla S et al. (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83: 2266–2274

    CAS  PubMed  Google Scholar 

  50. Devogelaer JP et al. (1992) Low bone mass in hypogonadal males. Effect of testosterone substitution therapy: a densitometric study. Maturitas 15: 17–23

    Article  CAS  Google Scholar 

  51. Behre HM et al. (1997) Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 82: 2386–2390

    Article  CAS  Google Scholar 

  52. van den Bergh JP et al. (2001) Bone mineral density and quantitative ultrasound parameters in patients with Klinefelter's syndrome after long-term testosterone substitution. Osteoporos Int 12: 55–62

    Article  CAS  Google Scholar 

  53. Hasle H et al. (1995) Cancer incidence in men with Klinefelter syndrome. Br J Cancer 71: 416–420

    Article  CAS  Google Scholar 

  54. Hultborn R et al. (1997) Prevalence of Klinefelter's syndrome in male breast cancer patients. Anticancer Res 17: 4293–4297

    CAS  PubMed  Google Scholar 

  55. Swerdlow AJ et al. (2005) Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. J Natl Cancer Inst 97: 1204–1210

    Article  Google Scholar 

  56. Wegmann TG and Smith DW (1963) Incidence of Klinefelter's syndrome among juvenile deliquents and felons. Lancet 1: 274

    Article  CAS  Google Scholar 

  57. Forssman H and Hambert G (1963) Incidence of Klinefelter's syndrome among mental patients. Lancet 1: 1327

    Article  Google Scholar 

  58. Nielsen J et al. (1980) Follow-up 10 years later of 34 Klinefelter males with karyotype 47,XXY and 16 hypogonadal males with karyotype 46,XY. Psychol Med 10: 345–352

    Article  CAS  Google Scholar 

  59. Stewart DA et al. (1982) Summary of clinical findings of children with 47,XXY, 47,XYY, and 47,XXX karyotypes. Birth Defects Orig Artic Ser 18: 1–5

    CAS  PubMed  Google Scholar 

  60. Rovet J et al. (1996) The psychoeducational profile of boys with Klinefelter syndrome. J Learn Disabil 29: 180–196

    Article  CAS  Google Scholar 

  61. Robinson A et al. (1992) Prognosis of prenatally diagnosed children with sex chromosome aneuploidy. Am J Med Genet 44: 365–368

    Article  CAS  Google Scholar 

  62. Bender BG et al. (2001) Neuropsychological and functional cognitive skills of 35 unselected adults with sex chromosome abnormalities. Am J Med Genet 102: 309–313

    Article  CAS  Google Scholar 

  63. Patwardhan AJ et al. (2000) Brain morphology in Klinefelter syndrome: extra X chromosome and testosterone supplementation. Neurology 54: 2218–2223

    Article  CAS  Google Scholar 

  64. Itti E et al. (2003) Functional neuroimaging provides evidence of anomalous cerebral laterality in adults with Klinefelter's syndrome. Ann Neurol 54: 669–673

    Article  Google Scholar 

  65. Netley C (1992) Time of pubertal onset, testosterone levels and intelligence in 47,XXY males. Clin Genet 42: 31–34

    Article  CAS  Google Scholar 

  66. Lue Y et al. (2005) XXY mice exhibit gonadal and behavioral phenotypes similar to Klinefelter syndrome. Endocrinology 146: 4148–4154

    Article  CAS  Google Scholar 

  67. Delisi LE et al. (1994) Schizophrenia and sex chromosome anomalies. Schizophr Bull 20: 495–505

    Article  CAS  Google Scholar 

  68. van Rijn S et al. (2006) Klinefelter's syndrome (karyotype 47,XXY) and schizophrenia-spectrum pathology. Br J Psychiatry 189: 459–461

    Article  Google Scholar 

  69. Ross NL et al. (2006) Methylation of two Homo sapiens-specific X-Y homologous genes in Klinefelter's syndrome (XXY). Am J Med Genet B Neuropsychiatr Genet 141: 544–548

    Article  Google Scholar 

  70. Gotz MJ et al. (1999) Criminality and antisocial behavior in unselected men with sex chromosome abnormalities. Psychol Med 29: 953–962

    Article  CAS  Google Scholar 

  71. Nielsen J and Pelsen B (1987) Follow-up 20 years later of 34 Klinefelter males with karyotype 47,XXY and 16 hypogonadal males with karyotype 46,XY. Hum Genet 77: 188–192

    Article  CAS  Google Scholar 

  72. Simm PJ and Zacharin MR (2006) The psychosocial impact of Klinefelter syndrome—a 10 year review. J Pediatr Endocrinol Metab 19: 499–505

    CAS  PubMed  Google Scholar 

  73. Nielsen J et al. (1988) Follow-up of 30 Klinefelter males treated with testosterone. Clin Genet 33: 262–269

    Article  CAS  Google Scholar 

  74. Wang C et al. (2000) Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. J Clin Endocrinol Metab 85: 2839–2853

    CAS  PubMed  Google Scholar 

  75. Cherrier MM et al. (2001) Testosterone supplementation improves spatial and verbal memory in healthy older men. Neurology 57: 80–88

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Bojesen.

Ethics declarations

Competing interests

A Bojesen declared he has no competing interests.

CH Gravholt has received an honorarium from Novo Nordisk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojesen, A., Gravholt, C. Klinefelter syndrome in clinical practice. Nat Rev Urol 4, 192–204 (2007). https://doi.org/10.1038/ncpuro0775

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpuro0775

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing