Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional hypogonadism among patients with obesity, diabetes, and metabolic syndrome

Abstract

Testosterone deficiency, defined as low total testosterone combined with physical, cognitive, and sexual signs and/or symptoms, is a common finding in adult men. Functional hypogonadism (FH) is defined as borderline low testosterone (T) secondary to aging and/or comorbid conditions such as diabetes, obesity, and/or metabolic syndrome. The relationship between FH and metabolic disorders is multifactorial and bidirectional, and associated with a disruption of the hypothalamic–pituitary–gonadal axis. Resolution of FH requires the correct diagnosis and treatment of the underlying condition(s) with lifestyle modifications considered first-line therapy. Normalization of T levels through dietary modifications such as caloric restriction and restructuring of macronutrients have recently been explored. Exercise and sleep quality have been associated with T levels, and patients should be encouraged to practice resistance training and sleep seven to nine hours per night. Supplementation with vitamin D and Trigonella foenum-graecum may also be considered when optimizing T levels. Ultimately, treatment of FH requires a multidisciplinary approach and personalized patient care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationship between hypogonadism and metabolic disorders.

Similar content being viewed by others

References

  1. Mulhall JP, Trost LW, Brannigan RE, Kurtz EG, Redmon JB, Chiles KA, et al. Evaluation and management of testosterone deficiency: AUA Guideline. J Urol. 2018;200:423.

    Article  PubMed  Google Scholar 

  2. Corona G, Lee DM, Forti G, O’Connor DB, Maggi M, O’Neill TW, et al. Age-related changes in general and sexual health in middle-aged and older men: results from the European Male Ageing Study (EMAS). J Sex Med. 2010;7:1362–80.

    Article  PubMed  Google Scholar 

  3. Laaksonen DE, Niskanen L, Punnonen K, Nyyssönen K, Tuomainen TP, Valkonen VP, et al. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care. 2004;27:1036–41.

    Article  CAS  PubMed  Google Scholar 

  4. Kloner RA, Carson C, Dobs A, Kopecky S, Mohler ER. Testosterone and cardiovascular disease. J Am Coll Cardiol. 2016;67:545–57.

    Article  CAS  PubMed  Google Scholar 

  5. Walther A, Breidenstein J, Miller R. Association of testosterone treatment with alleviation of depressive symptoms in men: a systemic review and meta-analysis. JAMA Psychiatry. 2019;76:31–40.

    Article  PubMed  Google Scholar 

  6. Rochira V, Antonio L, Vanderschueren D. EAA clinical guideline on management of bone health in the andrological outpatient clinic. Androl. 2018;6:272–85.

    Article  CAS  Google Scholar 

  7. Corona G, Rastrelli G, Morelli A, Sarchielli E, Cipriani S, Vignozzi L, et al. Treatment of functional hypogonadism besides pharmacological substitution. World J Mens Health. 2020;38:256–70.

    Article  PubMed  Google Scholar 

  8. Grossmann M, Matsumoto AM. A perspective on middle-aged and older men with functional hypogonadism: focus on holistic management. J Clin Endocrinol Metab. 2017;102:1067–75.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pivonello R, Menafra D, Riccio E, Garifalos F, Mazzella M, de Angelis C, et al. Metabolic disorders and male hypogonadotropic hypogonadism. Front Endocrinol. 2019;10:345.

    Article  Google Scholar 

  10. Corona G, Goulis DG, Huhtaniemi I, Zitzmann M, Toppari J, Forti G, et al. European Academy of Andrology (EAA) guidelines on investigation, treatment and monitoring of functional hypogonadism in males: endorsing organization: European Society of Endocrinology. Androl. 2020;8:970–87.

    Article  Google Scholar 

  11. International Diabetes Federation. The IDF consensus worldwide definition of Metabolic Syndrome [pamphlet]. Brussels: International Diabetes Federation; 2006.

  12. Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10 T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinol. 2003;144:5081–8.

    Article  CAS  Google Scholar 

  13. Goldman AL, Bhasin S, Wu FCW, Krishna M, Matsumoto AM, Jasuja R. A reappraisal of testosterone’s binding in circulation: physiological and clinical implications. Endocr Rev. 2017;38:302–4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, et al. Age trends in the level of serum testosterone and other hormones in middle aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87:589–98.

    Article  CAS  PubMed  Google Scholar 

  15. Glass AR, Swerdloff RS, Bray GA, Dahms WT, Atkinson RL. Low serum testosterone and sex-hormone-binding-globulin in massively obese men. J Clin Endocrinol Metab. 1977;45:1211–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360:859–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heianza Y, Sun D, Smith SR, Bray GA, Sacks FM, Qi L. Changes in gut microbiota-related metabolites and long-term successful weight loss in response to weight-loss diets: the POUNDS Lost Trial. Diabetes Care. 2018;41:414–16.

    Article  Google Scholar 

  19. Bray GA, Krauss RM, Sacks FM, Qi L. Lessons learned from the POUNDS Lost Study: genetic, metabolic, and behavioral factors affecting changes in body weight, body composition, and cardiometabolic risk. Curr Obes Rep. 2019;8:263–78.

    Article  Google Scholar 

  20. Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analysis of 57 prospective studies. Lancet. 2009;373:1083–96.

    Article  PubMed Central  Google Scholar 

  21. Beslay M, Srour B, Méjean C, Allés B, Fiolet T, Debras C, et al. Ultra-processed food intake in association with BMI change and risk of overweight and obesity: a prospective analysis of the French NutriNet-Santé cohort. PLoS Med. 2020;17:e1003256.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Caronia LM, Dwyer AA, Hayden D, Amati F, Pitteloud N, Hayes FJ. Abrupt decrease in serum testosterone levels after an oral glucose load in men: implications for screening for hypogonadism. Clin Endocrinol. 2013;78:29106.

    Article  Google Scholar 

  23. Anderson KE, Rosner W, Khan MS, New MI, Pang SY, Wissel PS, et al. Diet-hormone interactions: protein/carbohydrate ratio alters reciprocally the plasma levels of testosterone and cortisol and their respective binding globulins in man. Life Sci. 1987;40:1761–8.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Petsoni G, McGlynn KA, Platz EA, Rohrmann S. Cross-sectional associations between healthy eating index and sex steroid hormones in men – National Health and Nutrition Examination Survery 1999-2002. Androl. 2020;8:154–9.

    Article  CAS  Google Scholar 

  25. Padwal R, Leslie WD, Lix LM, Majumdar SR. Relationship among body fat percentage, body mass index, and all-cause mortality. A cohort study relationship among body fat percentage, body mass. Ann Intern Med. 2016;164:532–41.

    Article  PubMed  Google Scholar 

  26. Armamento-Villareal R, Aguirre LE, Qualls C, Villareal DT. Effect of lifestyle intervention on the hormonal profile of frail, obese older Men. J Nutr Health Aging. 2016;20:334–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang Fui MN, Prendergast LA, Dupuis P, Raval M, Strauss BJ, Zajac JD, et al. Effects of testosterone on body fat and lean mass in obese men on a hypocaloric diet: a randomised controlled trial. BMC Med. 2016;14:153.

    Article  Google Scholar 

  28. Tremellen K, Mcphee N, Pearce K. Metabolic endotoxaemia related inflammation is associated with hypogonadism in overweight men. Basic Clin Androl. 2017;27:5.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tremellen K, McPhee N, Pearce K, Benson S, Schedlowski M, Engler H. Endotoxin-initiated inflammation reduces testosterone production in men of reproductive age. Am J Physiol-Endocrinol Metab. 2018;314:E206–13.

    Article  PubMed  Google Scholar 

  30. Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: Evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007;86:1286–92.

    Article  CAS  PubMed  Google Scholar 

  31. Moran LJ, Brinkworth GD, Martin S, Wycherley TP, Stuckey B, Lutze J, et al. Long-term effects of a randomized controlled trial comparing high protein or high carbohydrate weight loss diets on testosterone, SHBG, erectile and urinary function in overweight and obese men. PLoS One. 2020;11:e0161297.

    Article  Google Scholar 

  32. Pearce KL, Tremellen K. The effect of macronutrients on reproductive hormones in overweight and obese men: a pilot study. Nutrients. 2019;11:3059.

    Article  CAS  PubMed Central  Google Scholar 

  33. Iranmanesh A, Lawson D, Veldhuis JD. Glucose ingestion acutely lowers pulsatile LH and basal testosterone secretion in men. Am J Physiol-Endocrinol Metab. 2012;302:E724–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jayagopal V, Albertazzi P, Kilpatrick ES, Howarth EM, Jennings PE, Hepburn DA, et al. Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care. 2002;25:1709–14.

    Article  CAS  PubMed  Google Scholar 

  35. Liu ZH, Kanjo Y, Mizutani S. A review of phytoestrogens: their occurrence and fate in the environment. Water Res. 2010;44:567–77.

    Article  CAS  PubMed  Google Scholar 

  36. Wisniewski AB, Klein SL, Lakshmanan Y, Gearhart JP. Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats. J Urol. 2003;169:1582–6.

    Article  CAS  PubMed  Google Scholar 

  37. Cline JM, Franke AA, Register TC, Golden DL, Adams MR. Effects of dietary isoflavone aglycones on the reproductive tract of male and female mice. Toxicol Pathol. 2004;32:91–99.

    Article  CAS  PubMed  Google Scholar 

  38. Tan KAL, Walker M, Morris K, Greig I, Mason JI, Sharpe RM. Infant feeding with soy formula milk: effects on puberty progression, reproductive function and testicular cell numbers in marmoset monkeys in adulthood. Hum Reprod. 2006;21:896–904.

    Article  CAS  PubMed  Google Scholar 

  39. Martinez J, Lewi JE. An unusual case of gynecomastia associated with soy product consumption. Endocr Pract. 2008;14:415–8.

    Article  PubMed  Google Scholar 

  40. Dhindsa S, Prabhakar S, Sethi M, Bandyopadhyay A, Chaudhuri A, Dandona P. Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. J Clin Endocrinol Metab. 2004;89:5462–8.

    Article  CAS  PubMed  Google Scholar 

  41. Sathyapalan T, Rigby AS, Bhasin S, Thatcher NJ, Kilpatrick ES, Atkin SL. Effect of soy in men with type 2 diabetes mellitus and subclinical hypogonadism: a randomized controlled study. J Clin Endocrinol Metab. 2017;102:425–33.

    PubMed  Google Scholar 

  42. Reed KE, Camargo J, Hamilton-Reeves J, Kurzer M, Messina M. Neither soy nor isoflavone intake affects male reproductive hormones: an expanded and updated meta-analysis of clinical studies. Reprod Toxicol. 2021;100:60–67.

    Article  CAS  PubMed  Google Scholar 

  43. Ballor DL, Poehlman ET. Exercise-training enhances fat-free mass preservation during diet-induced weight loss: a meta-analytical finding. Int J Obes Relat Metab Disord. 1994;18:35–40.

    CAS  PubMed  Google Scholar 

  44. Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med. 2009;43:1–2.

    PubMed  Google Scholar 

  45. American College of Sports Medicine. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 1998;30:992–1008.

    Google Scholar 

  46. Steeves JA, Fitzhugh EC, Bradwin G, McGlynn KA, Platz EA, Joshu CE. Cross-sectional association between physical activity and serum testosterone levels in US men: results from NHANES 1999-2004. Androl. 2016;4:465–72.

    Article  CAS  Google Scholar 

  47. Wheeler GD, Wall SR, Belcastro AN, Cumming DC. Reduced serum testosterone and prolactin levels in male distance runners. JAMA. 1984;252:514–6.

    Article  CAS  PubMed  Google Scholar 

  48. Hooper DR, Tenforde AS, Hackney AC. Treating exercise-associated low testosterone and its related symptoms. Phys Sports Med. 2018;46:427–34.

    Article  Google Scholar 

  49. Dawson JK, Dorff TB, Schroeder ET, Lane CJ, Gross ME, Dieli-Conwright CM. Impact of resistance training on body composition and metabolic syndrome variables during androgen deprivation therapy for prostate cancer: a pilot randomized controlled trial. BMC Cancer. 2018;18:368.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Focht BC, Lucas AR, Grainger E, Simpson C, Fairman CM, Thomas-Ahner JM, et al. Effects of a group-mediated exercise and dietary intervention in the treatment of prostate cancer patients undergoing androgen deprivation therapy: results from the IDEA-P Trial. Ann Behav Med. 2018;52:412–28.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Heufelder AE, Saad F, Bunck MC, Gooren L. Fifty-two-week treatment with diet and exercise plus transdermal testosterone reverses the metabolic syndrome and improves glycemic control in men with newly diagnosed type 2 diabetes and subnormal plasma testosterone. J Androl. 2009;30:726–33.

    Article  CAS  PubMed  Google Scholar 

  52. Ader R, Cohen N, Felten D. Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet. 1995;345:99–103.

    Article  CAS  PubMed  Google Scholar 

  53. Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA. 1992;267:1244–52.

    Article  CAS  PubMed  Google Scholar 

  54. Eda N, Ito H, Shimizu K, Suzuki S, Lee E, Akama T. Yoga stretching for improving salivary immune function and mental stress in middle-aged and older adults. J Women Aging. 2018;30:227–41.

    Article  PubMed  Google Scholar 

  55. Eda N, Shimizu K, Suzuki S, Tanabe Y, Lee E, Akama T. Effects of yoga exercise on salivary beta-defensin 2. Eur J Appl Phys. 2013;113:2621–27.

    Article  CAS  Google Scholar 

  56. Eda N, Ito H, Akama T. Beneficial effects of yoga stretching on salivary stress hormones and parasympathetic nerve activity. J Sport Sci Med. 2020;19:695–702.

    Google Scholar 

  57. Patel P, Shiff B, Kohn TP, Ramasamy R. Impaired sleep associated with low testosterone in US adult males: results from the National Health and Nutrition Examination Survey. World J Urol. 2019;37:1449–53.

    Article  CAS  PubMed  Google Scholar 

  58. Reutrakul S, Van Cauter E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism. 2018;84:56–66.

    Article  CAS  PubMed  Google Scholar 

  59. Cappuccio FP, Cooper D, D’Elia L, Strazzullo P, Miller MA. Sleep duration predicts cardiovascular outcomes: a systematic review and metaanalysis of prospective studies. Eur Heart J. 2011;32:1484–14.

    Article  PubMed  Google Scholar 

  60. Dray F, Reinberg A, Sebaoun J. Biological rhythm of plasma free testosterone in healthy adult males: existence of a circadian variation. C R Hebd Seances Acad Sci. 1965;261:573–6.

    CAS  Google Scholar 

  61. Redline S, Kirchner HL, Quan SF, Gottlieb DJ, Kapur V, Newman A. The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Arch Intern Med. 2004;164:406–18.

    Article  PubMed  Google Scholar 

  62. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–5.

    Article  CAS  PubMed  Google Scholar 

  63. Hammoud AO, Walker JM, Gibson M, Cloward TV, Hunt SC, Kolotkin RL, et al. Sleep apnea, reproductive hormones and quality of sexual life in severely obese men. Obesity. 2011;19:1118–23.

    Article  PubMed  Google Scholar 

  64. Luboshitzky R, Lavie L, Shen-Orr Z, Herer P. Altered luteinizing hormone and testosterone secretion in middle-aged obese men with obstructive sleep apnea. Obes Res. 2005;13:780–6.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang XB, Lin QC, Zeng HQ, Jiang XT, Chen B, Chen X. Erectile dysfunction and sexual hormone levels in men with obstructive sleep apnea: efficiency of continuous positive airway pressure. Arch Sex Behav. 2016;45:235–40.

    Article  PubMed  Google Scholar 

  66. Rhoden EL, Telöken C, Sogari PR, Vargas Souta CA. The use of the simplified International Index of Erectile Function (IIEF-5) as a diagnostic tool to study the prevalence of ED. Int J Impot Res. 2002;14:245–50.

    Article  CAS  PubMed  Google Scholar 

  67. Leproult R, Deliens G, Gilson M, Peigneux P. Beneficial impact of sleep extension on fasting insulin sensitivity in adults with habitual sleep restriction. Sleep. 2015;38:707–15.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Luboshitzky R, Zabari Z, Shen-Orr Z, Herer P, Lavie P. Disruption of the nocturnal testosterone rhythm by sleep fragmentation in normal men. J Clin Endocrinol Metab. 2001;86:1134–9.

    Article  CAS  PubMed  Google Scholar 

  69. Cote KA, McCormick CM, Geniole SN, Renn RP, MacAulay SD. Sleep deprivation lowers reactive aggression and testosterone in men. Biol Psychol. 2013;92:249–56.

    Article  PubMed  Google Scholar 

  70. Leproult R, Van, Cauter E. Effect of 1 week of sleep restriction on testosterone levels in young healthy men. JAMA. 2011;305:2173–4.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Arnal PJ, Drogou C, Sauvet F, Regnaulds J, Dispersyn G, Faraut B, et al. Effect of sleep extension on the subsequent testosterone, cortisol and prolactin responses to total sleep deprivation and recovery. J Neuroendocrinol. 2016;28:1–9.

    Article  Google Scholar 

  72. Gutierrez-Robledo LM, Avila-Funes JA, Amieva H, Meillon C, Acosta JL, Navarrete-Reyes AP, et al. Association of low serum 25-hydroxyvitamin D levels with the frailty syndrome in Mexican community-dwelling elderly. Aging Male. 2016;19:58.

    Article  CAS  PubMed  Google Scholar 

  73. Kendrick J, Targher G, Smits G, Chonchol M. 25-Hydroxyvitamin D deficiency is independently associated with cardiovascular disease in the Third National Health and Nutrition Examination Survey. Atherosclerosis. 2008;205:255–60.

    Article  PubMed  Google Scholar 

  74. Wan Z, Guo J, Chen C, Liu L, Lui G. Association of serum 25-Hydroxyvitamin D concentrations with all-cause and cause-specific mortality among individuals with diabetes. Diabetes Care. 2021;44:350–57.

    Article  CAS  PubMed  Google Scholar 

  75. Wu PW, Rhew EY, Dyer AR, Dunlop DD, Langman CB, Price H, et al. 25-Hydroxyvitamin D and cardiovascular risk factors in women with systemic lupus erythematosus. Arthritis Rheum. 2009;61:1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Melamed ML, Michos ED, Post W, Astor B. 25- Hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med. 2008;168:1629.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Foresta C, Selice R, De Toni L, Di Mambro A, Carraro U, Plebani M, et al. Altered bone status in unilateral testicular cancer survivors: role of CYP2R1 and its luteinizing hormone-dependency. J Endocrinol Invest. 2013;36:379–84.

    CAS  PubMed  Google Scholar 

  78. Foresta C, Calogero AE, Lombardo F, Lenzi A, Ferlin A. Late-onset hypogonadism: beyond testosterone. Asian J Androl. 2015;17:236–8.

    Article  CAS  PubMed  Google Scholar 

  79. Tak YJ, Lee JG, Kim YJ, Park NC, Kim SS, Lee S, et al. Serum 25-hydroxyvitamin D levels and testosterone deficiency in middle-aged Korean men: a cross-sectional study. Asian J Androl. 2015;17:324.

    Article  CAS  PubMed  Google Scholar 

  80. Wang N, Han B, Li Q, Chen Y, Chen Y, Xia F, et al. Vitamin D is associated with testosterone and hypogonadism in Chinese men: results from a cross-sectional SPECT-China study. Reprod Biol Endocrinol. 2015;13:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee DM, Tajar A, Pye SR, Boonen S, Vanderschueren D, Bouillon R, et al. Association of hypogonadism with vitamin D status: the European Male Ageing study. Eur J Endocrinol. 2012;166:77.

    Article  CAS  PubMed  Google Scholar 

  82. Ha CD, Han TK, Lee SH, Cho JK, Kang HS. Association between serum vitamin D status and metabolic syndrome in Korean young men. Med Sci Sports Exerc. 2014;46:513.

    Article  CAS  PubMed  Google Scholar 

  83. Chung JY, Hong SH. Vitamin D status and its association with cardiometabolic risk factors in Korean adults based on a 2008–2010 Korean National Health and Nutrition Examination Survey. Nutr Res Pract. 2013;7:495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pilz S, Frisch S, Koertke H, Kuhn J, Dreier J, Obermayer-Pietsch B, et al. Effect of vitamin D supplementation on testosterone levels in men. Horm Metab Res. 2011;43:223–5.

    Article  CAS  PubMed  Google Scholar 

  85. Jorde R, Grimnes G, Hutchinson MS, Kjærgaard M, Kamycheva E, Svartberg J. Supplementation with vitamin D does not increase serum testosterone levels in healthy males. Horm Metab Res. 2013;45:675–81.

    Article  CAS  PubMed  Google Scholar 

  86. Heijboer AC, Oosterwerff M, Schroten NF, Eekhoff EMW, Chel VGM, de Boer RA, et al. Vitamin D supplementation and testosterone concentrations in male human subjects. Clin Endocrinol. 2015;83:105–10.

    Article  CAS  Google Scholar 

  87. Canguven O, Talib RA, Ansari WE, Yassin DJ, Naimi AA. Vitamin D treatment improves levels of sexual hormones, metabolic parameters and erectile function in middle-aged vitamin D deficient men. Aging Male. 2017;20:9–16.

    Article  CAS  PubMed  Google Scholar 

  88. Lerchbaum E, Trummer C, Theiler-Schwetz V, Kollman M, Wölfler M, Heijboer AC, et al. Effects of Vitamin D supplementation on androgens in men with low testosterone levels: a randomized controlled trial. Eur J Nut. 2019;58:3135–46.

    Article  CAS  Google Scholar 

  89. Biswas TK, Pandit S, Mondal S, Biswas SK, Jana U, Ghosh T, et al. Clinical evaluation of spermatogenic activity of processed shilajit in oligospermia. Andrologia. 2009;42:48–56.

    Article  Google Scholar 

  90. Pandit S, Biswas S, Jana U, De RK, Mukhopadhyay SC, Biswas TK. Clinical evaluation of purified Shilajit on testosterone in healthy volunteers. Andrologia. 2016;48:570–5.

    Article  CAS  PubMed  Google Scholar 

  91. Steels E, Rao A, Vitetta L. Physiological aspects of male libido enhanced by standardized Trigonella foenum-graecum extract and mineral formulation. Phytother Res. 2011;25:1294–300.

    Article  PubMed  Google Scholar 

  92. Price KR, Johnson IT, Fenwick GR. The chemistry and biological significance of saponins in foods and feedingstuffs. Crit Rev Food Sci Nutr. 1987;26:27–135.

    Article  CAS  PubMed  Google Scholar 

  93. Aswar U, Bodhankar SL, Mohan V, Thakurdesai PA. Effect of furostanol glycosides from Trigonella foenum-graecum on the reproductive system of male albino rats. Phytother Res. 2010;24:1482–8.

    Article  CAS  PubMed  Google Scholar 

  94. Wilborn C, Taylor L, Poole C, Foster C, Willoughby D, Kreider R. Effects of a purported aromatase and 5 a-reductase inhibitor on hormone profiles in college-age man. Int J Sport Nutr Exe. 2010;20:457–65.

    Article  CAS  Google Scholar 

  95. Rao A, Steels E, Inder WJ, Abraham S, Vietta L. Testofen, a specialised Trigonella foenum-graecum seed extract reduces age-related symptoms of androgen decrease, increases testosterone levels and improves sexual function in healthy aging males in a double-blind randomised clinical study. Aging Male. 2016;19:134–42.

    Article  PubMed  Google Scholar 

  96. D’Aniello A, Di Fiore MM, Fisher GH, Milone A, Seleni A, D’Aniello S, et al. Occurrence of D-aspartic acid and N-methyl-D-aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release. FASEB J. 2000;14:699–714.

    Article  PubMed  Google Scholar 

  97. D’Aniello A, Di Cosmo A, Di Cristo C, Annunziato L, Petrucelli L, Fisher G. Involvement of D-aspartic acid in the synthesis of testosterone in rat testes. Life Sci. 1996;59:97–104.

    Article  PubMed  Google Scholar 

  98. Nagata Y, Homma H, Lee JA, Imai K. D-Aspartate stimulation of testosterone synthesis in rat Leydig cells. FEBS Lett. 1999;444:160–4.

    Article  CAS  PubMed  Google Scholar 

  99. Melville GW, Siegler JC, Marshall PWM. Three and six grams supplementation of D-aspartic acid in resistance trained men. J Int Soc Sport Nutr. 2015;12:1–6.

    Article  CAS  Google Scholar 

  100. Willoughby DS, Leutholtz B. D-Aspartic acid supplementation combined with 28 days of heavy resistance training has no effect on body composition, muscle strength, and serum hormones associated with the hypothalamo-pituitary-gonadal axis in resistance-trained men. Nutr Res. 2013;33:803–10.

    Article  CAS  PubMed  Google Scholar 

  101. D’Aniello S, Somorjai I, Garcia-Fernàndez J, Topo E, D’Aniello A. D-Aspartic acid is a novel endogenous neurotransmitter. FASEB J. 2011;25:1014–27.

    Article  PubMed  Google Scholar 

  102. Ota N, Shi T, Sweedler JV. D-Aspartate acts as a signaling molecule in nervous and neuroendocrine systems. Amino Acids. 2012;43:1873–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Melville GW, Siegler JC, Marshall PWM. The effects of D-aspartic acid supplementation in resistance-trained men over a three month training period: a randomised controlled trial. PLoS One. 2017;12:e1–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ML was responsible for the literature review and writing of the review article. AP created an outline for the review article, edited the review article, and provided an expert opinion. MP provided expert opinion and edited the review article. ES provided feedback on the review article and assisted with figure creation.

Corresponding author

Correspondence to Marne Louters.

Ethics declarations

Competing interests

AP is a consultant for Endo Pharmaceuticals.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louters, M., Pearlman, M., Solsrud, E. et al. Functional hypogonadism among patients with obesity, diabetes, and metabolic syndrome. Int J Impot Res 34, 714–720 (2022). https://doi.org/10.1038/s41443-021-00496-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41443-021-00496-7

This article is cited by

Search

Quick links