Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: late-onset hypogonadism

Abstract

Late-onset hypogonadism (formerly called the andropause) is a clinical and biochemical syndrome associated with advancing age, which is characterized by typical signs and symptoms and a deficiency in serum testosterone levels. Age-related hypoandrogenism in the male is a result of the interaction of hypothalamopituitary and testicular factors. The hypothalamic pulsatile secretion of gonadotropin-releasing hormone is blunted, due to increased hypothalamic sensitivity to inhibition by steroids, but the responsiveness of the pituitary gonadotrophs seems to be intact. In addition, testicular volume as well as Leydig cell mass and reserve function are diminished. Taken together, these mechanisms result in reduced testosterone secretion and the loss of nycthemeral variability.

Key Points

  • Late-onset hypogonadism (LOH) results from the interaction of hypothalamic, pituitary and testicular factors

  • In men with LOH, the hypothalamic pulsatile secretion of gonadotropin-releasing hormone is reduced

  • Testicular Leydig cell mass and reserve function are diminished in men with LOH

  • Underlying endocrine mechanisms result in reduced testosterone secretion and the loss of nycthemeral variability

  • Many systemic, pathologic conditions are epidemiologically linked to LOH; whether these are a cause or a result of LOH is unclear, and in some cases the relationship may be bidirectional (e.g. obesity)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hormonal regulation of testicular function and spermatogenesis

Similar content being viewed by others

References

  1. Nieschlag E et al. (2005) Investigation, treatment and monitoring of late-onset hypogonadism in males: ISA, ISSAM, and EAU recommendations. Int J Androl 28: 125–127

    Article  CAS  PubMed  Google Scholar 

  2. Comhaire F and Vermeulen A (1975) Plasma testosterone in patients with varicocele and sexual inadequacy. J Clin Endocrinol Metab 40: 824–829

    Article  CAS  PubMed  Google Scholar 

  3. Canales BK et al. (2005) Prevalence and effect of varicoceles in an elderly population. Urology 66: 627–631

    Article  PubMed  Google Scholar 

  4. Vermeulen A et al. (1996) Influence of some biological indexes on sex hormone-binding globulin and androgen levels in aging or obese males. J Clin Endocrinol Metab 81: 1821–1826

    CAS  PubMed  Google Scholar 

  5. Tsai EC et al. (2000) Low serum testosterone level as a predictor of increased visceral fat in Japanese-American men. Int J Obes Relat Metab Disord 24: 485–491

    Article  CAS  PubMed  Google Scholar 

  6. T'Sjoen G et al. (2003) Self-referred patients in an aging male clinic: much more than androgen deficiency alone. Aging Male 6: 157–165

    Article  CAS  PubMed  Google Scholar 

  7. Comhaire FH (2000) Andropause: hormone replacement therapy in the ageing male. Eur Urol 38: 655–662

    Article  CAS  PubMed  Google Scholar 

  8. Isom-Batz G et al. (2005) Testosterone as a predictor of pathological stage in clinically localized prostate cancer. J Urol 173: 1935–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Imamoto T et al. (2005) Pretreatment serum testosterone level as a predictive factor of pathological stage in localized prostate cancer patients treated with radical prostatectomy. Eur Urol 47: 308–312

    Article  CAS  PubMed  Google Scholar 

  10. Feneley MR and Carruthers M (2005) PSA monitoring during testosterone replacement therapy: low long-term risk of prostate cancer with improved opportunity for cure. In Proceedings of the 4th international workshop on molecular andrology: 2005 October 7–9; Giessen, Germany. Andrologia 37: 249

    Google Scholar 

  11. Rhoden EL and Morgentaler A (2003) Testosterone replacement therapy in hypogonadal men at high risk for prostate cancer: results of 1 year of treatment in men with prostatic intraepithelial neoplasia. J Urol 170: 2348–2351

    Article  CAS  PubMed  Google Scholar 

  12. Kaufman J (2006) A rational approach to androgen therapy for hypogonadal men with prostate cancer. Int J Impot Res 18: 26–31

    Article  CAS  PubMed  Google Scholar 

  13. Hammond GL et al. (1979) Serum steroids and pituitary hormones in infants with particular reference to testicular activity. J Clin Endocrinol Metab 49: 40–45

    Article  CAS  PubMed  Google Scholar 

  14. Dufau ML (1988) Endocrine regulation and communicating functions of the Leydig cell. Annu Rev Physiol 50: 483–508

    Article  CAS  PubMed  Google Scholar 

  15. Schally AV et al. (1971) Isolation and properties of the FSH and LH-releasing hormone. Biochem Biophys Res Commun 43: 393–399

    Article  CAS  PubMed  Google Scholar 

  16. Crowley WF Jr et al. (1991) Neuroendocrine control of human reproduction in the male. Recent Prog Horm Res 47: 27–62

    CAS  PubMed  Google Scholar 

  17. Knobil E (1990) The GnRH pulse generator. Am J Obstet Gynecol 163: 1721–1727

    Article  CAS  PubMed  Google Scholar 

  18. Kaufman JM et al. (1985) Electrophysiological manifestation of luteinizing hormone-releasing hormone pulse generator activity in the rhesus monkey: influence of alpha-adrenergic and dopaminergic blocking agents. Endocrinology 116: 1327–1333

    Article  CAS  PubMed  Google Scholar 

  19. Knobil E (1980) The neuroendocrine control of the menstrual cycle. Recent Prog Horm Res 36: 53–88

    CAS  PubMed  Google Scholar 

  20. Marshall JC and Kelch RP (1986) Gonadotropin-releasing hormone: role of pulsatile secretion in the regulation of reproduction. N Engl J Med 315: 1459–1468

    Article  CAS  PubMed  Google Scholar 

  21. Plant TM and Dubey AK (1984) Evidence from the rhesus monkey (Macaca mulatta) for the view that negative feedback control of luteinizing hormone secretion by the testis is mediated by a deceleration of hypothalamic gonadotropin-releasing hormone pulse frequency. Endocrinology 115: 2145–2153

    Article  CAS  PubMed  Google Scholar 

  22. Matsumoto AM and Bremner WJ (1984) Modulation of pulsatile gonadotropin secretion by testosterone in man. J Clin Endocrinol Metab 58: 609–614

    Article  CAS  PubMed  Google Scholar 

  23. Opstad PK (1992) Androgenic hormones during prolonged physical stress, sleep, and energy deficiency. J Clin Endocrinol Metab 74: 1176–1183

    CAS  PubMed  Google Scholar 

  24. MacConnie SE et al. (1986) Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med 315: 411–417

    Article  CAS  PubMed  Google Scholar 

  25. Aitken RJ et al. (1985) Relationship between the movement characteristics of human spermatozoa and their ability to penetrate cervical mucus and zona-free hamster oocytes. J Reprod Fertil 73: 441–449

    Article  CAS  PubMed  Google Scholar 

  26. Warren MP (1983) Effects of undernutrition on reproductive function in the human. Endocr Rev 4: 363–377

    Article  CAS  PubMed  Google Scholar 

  27. Vescovi PP et al. (1992) Chronic effects of marihuana smoking on luteinizing hormone, follicle-stimulating hormone and prolactin levels in human males. Drug Alcohol Depend 30: 59–63

    Article  CAS  PubMed  Google Scholar 

  28. Kesner JS et al. (1986) The effect of morphine on the electrophysiological activity of the hypothalamic luteinizing hormone-releasing hormone pulse generator in the rhesus monkey. Neuroendocrinology 43: 686–688

    Article  CAS  PubMed  Google Scholar 

  29. Veldhuis JD et al. (1984) Role of endogenous opiates in the expression of negative feedback actions of androgen and estrogen on pulsatile properties of luteinizing hormone secretion in man. J Clin Invest 74: 47–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dudas B and Merchenthaler I (2006) Three-dimensional representation of the neurotransmitter systems of the human hypothalamus: inputs of the gonadotrophin hormone-releasing hormone neuronal system. J Neuroendocrinol 18: 79–95

    Article  CAS  PubMed  Google Scholar 

  31. Clayton RN (1989) Gonadotrophin-releasing hormone: its actions and receptors. J Endocrinol 120: 11–19

    Article  CAS  PubMed  Google Scholar 

  32. Schurmeyer T et al. (1984) Suppression of pituitary and testicular function in normal men by constant gonadotropin-releasing hormone agonist infusion. J Clin Endocrinol Metab 59: 19–24

    Article  CAS  PubMed  Google Scholar 

  33. Matsumoto AM et al. (1991) The physiological significance of pulsatile LHRH secretion in man: gonadotrophin responses to physiological doses of pulsatile versus continuous LHRH administration. Int J Androl 14: 23–32

    Article  CAS  PubMed  Google Scholar 

  34. Conn PM and Crowley WF Jr (1991) Gonadotropin-releasing hormone and its analogs. N Engl J Med 324: 93–103

    Article  CAS  PubMed  Google Scholar 

  35. Belchetz PE et al. (1978) Hypophysial responses to continuous and intermittent delivery of hypothalamic gonadotropin-releasing hormone. Science 202: 631–633

    Article  CAS  PubMed  Google Scholar 

  36. Nilsson B et al. (1986) Differences in the carbohydrate moieties of the common alpha-subunits of human chorionic gonadotropin, luteinizing hormone, follicle-stimulating hormone, and thyrotropin: preliminary structural inferences from direct methylation analysis. Endocrinology 119: 2737–2143

    Article  CAS  PubMed  Google Scholar 

  37. Spratt DI et al. (1988) Neuroendocrine–gonadal axis in men: frequent sampling of LH, FSH, and testosterone. Am J Physiol 254: E658–E666

    CAS  PubMed  Google Scholar 

  38. Boyar R et al. (1972) Synchronization of augmented luteinizing hormone secretion with sleep during puberty. N Engl J Med 287: 582–586

    Article  CAS  PubMed  Google Scholar 

  39. Fehm HL et al. (1991) Sleep-associated augmentation and synchronization of luteinizing hormone pulses in adult men. Neuroendocrinology 54: 192–195

    Article  CAS  PubMed  Google Scholar 

  40. Veldhuis JD et al. (1987) Operating characteristics of the male hypothalamo–pituitary–gonadal axis: pulsatile release of testosterone and follicle-stimulating hormone and their temporal coupling with luteinizing hormone. J Clin Endocrinol Metab 65: 929–941

    Article  CAS  PubMed  Google Scholar 

  41. Winters SJ and Troen P (1986) Testosterone and estradiol are co-secreted episodically by the human testis. J Clin Invest 78: 870–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Comhaire FH and Vermeulen A (1976) Testosterone concentration in the fluids of seminiferous tubules, the interstitium and the rete testis of the rat. J Endocrinol 70: 229–235

    Article  CAS  PubMed  Google Scholar 

  43. Chase DJ et al. (1992) Maintenance or stimulation of steroidogenic enzymes and testosterone production in rat Leydig cells by continuous and pulsatile infusions of luteinizing hormone during passive immunization against gonadotrophin-releasing hormone. J Reprod Fertil 95: 657–667

    Article  CAS  PubMed  Google Scholar 

  44. Gibson-Berry KL and Chase DJ (1990) Continuous and pulsatile infusions of luteinizing hormone have identical effects on steroidogenic capacity and sensitivity of Leydig cells in rats passively immunized against gonadotropin-releasing hormone. Endocrinology 126: 3107–3115

    Article  CAS  PubMed  Google Scholar 

  45. Bridges NA et al. (1993) The relationship between endogenous testosterone and gonadotrophin secretion. Clin Endocrinol (Oxf) 38: 373–378

    Article  CAS  Google Scholar 

  46. Santen RJ (1975) Is aromatization of testosterone to estradiol required for inhibition of luteinizing hormone secretion in men? J Clin Invest 56: 1555–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Winters SJ and Troen P (1985) Evidence for a role of endogenous estrogen in the hypothalamic control of gonadotropin secretion in men. J Clin Endocrinol Metab 61: 842–845

    Article  CAS  PubMed  Google Scholar 

  48. Canovatchel WJ et al. (1994) Luteinizing hormone pulsatility in subjects with 5-alpha-reductase deficiency and decreased dihydrotestosterone production. J Clin Endocrinol Metab 78: 916–921

    CAS  PubMed  Google Scholar 

  49. Veldhuis JD et al. (1989) Random and non-random coincidence between luteinizing hormone peaks and follicle-stimulating hormone, alpha subunit, prolactin, and gonadotropin-releasing hormone pulsations. J Neuroendocrinol 1: 185–194

    Article  CAS  PubMed  Google Scholar 

  50. Comhaire FH et al. (1995) Inhibin and steroid responses to testicular stimulation in normal men. Hum Reprod 10: 1740–1744

    Article  CAS  PubMed  Google Scholar 

  51. Anderson RA and Sharpe RM (2000) Regulation of inhibin production in the human male and its clinical applications. Int J Androl 23: 136–144

    Article  CAS  PubMed  Google Scholar 

  52. Ying SY (1988) Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr Rev 9: 267–293

    Article  CAS  PubMed  Google Scholar 

  53. Hancock AD et al. (1992) Inhibin and inhibin alpha-chain precursors are produced by immature rat Sertoli cells in culture. Biol Reprod 46: 155–161

    Article  CAS  PubMed  Google Scholar 

  54. Tuohimaa P et al. (2000) Inhibin and activin subunits and spermatogenesis. Andrologia 32: 48–52

    CAS  PubMed  Google Scholar 

  55. Bame JH et al. (1999) Effect of long-term immunization against inhibin on sperm output in bulls. Biol Reprod 60: 1360–1366

    Article  CAS  PubMed  Google Scholar 

  56. Hayes FJ et al. (2001) Importance of inhibin B in the regulation of FSH secretion in the human male. J Clin Endocrinol Metab 86: 5541–5546

    Article  CAS  PubMed  Google Scholar 

  57. Hayes FJ et al. (2001) Differential regulation of gonadotropin secretion by testosterone in the human male: absence of a negative feedback effect of testosterone on follicle-stimulating hormone secretion. J Clin Endocrinol Metab 86: 53–58

    CAS  PubMed  Google Scholar 

  58. Bartke A (1977) Prolactin and the physiological regulation of the mammalian testis. In: The testis in normal and infertile men. New York: Raven Press

    Google Scholar 

  59. Winters SJ and Troen P (1984) Altered pulsatile secretion of luteinizing hormone in hypogonadal men with hyperprolactinaemia. Clin Endocrinol (Oxf) 21: 257–263

    Article  CAS  Google Scholar 

  60. Magrini B et al. (1976) Study on the relationship between plasma prolactin levels and androgen metabolism in man. J Clin Endocrinol Metab 43: 944–947

    Article  CAS  PubMed  Google Scholar 

  61. Hair WM et al. (2002) Prolactin receptor expression in human testis and accessory tissues: localization and function. Mol Hum Reprod 8: 606–611

    Article  CAS  PubMed  Google Scholar 

  62. Luboshitzky R et al. (2000) Long-term melatonin administration does not alter pituitary–gonadal hormone secretion in normal men. Hum Reprod 15: 60–65

    Article  CAS  PubMed  Google Scholar 

  63. Deslypere JP and Vermeulen A (1984) Leydig cell function in normal men: effect of age, life-style, residence, diet, and activity. J Clin Endocrinol Metab 59: 955–962

    Article  CAS  PubMed  Google Scholar 

  64. Kaufman JM and Vermeulen A (2005) The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev 26: 833–876

    Article  CAS  PubMed  Google Scholar 

  65. Ferrini RL and Barrett-Connor E (1998) Sex hormones and age: a cross-sectional study of testosterone and estradiol and their bioavailable fractions in community-dwelling men. Am J Epidemiol 147: 750–754

    Article  CAS  PubMed  Google Scholar 

  66. Morley JE et al. (1997) Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism 46: 410–413

    Article  CAS  PubMed  Google Scholar 

  67. Mahmoud AM et al. (2003) Testicular volume in relation to hormonal indices of gonadal function in community-dwelling elderly men. J Clin Endocrinol Metab 88: 179–184

    Article  CAS  PubMed  Google Scholar 

  68. Vermeulen A (2005) Hormonal cut-offs of partial androgen deficiency: a survey of androgen assays. J Endocrinol Invest 28: 28–31

    CAS  PubMed  Google Scholar 

  69. Snyder PJ et al. (1999) Effect of testosterone treatment on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab 84: 1966–1972

    CAS  PubMed  Google Scholar 

  70. O'Donnell AB et al. (2006) Testosterone, dehydroepiandrosterone, and physical performance in older men: results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab 91: 425–431

    Article  CAS  PubMed  Google Scholar 

  71. Veldhuis JD et al. (2005) Mechanisms of ensemble failure of the male gonadal axis in aging. J Endocrinol Invest 28: 8–13

    Article  CAS  PubMed  Google Scholar 

  72. Neaves WB et al. (1984) Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men. J Clin Endocrinol Metab 59: 756–763

    Article  CAS  PubMed  Google Scholar 

  73. Longcope C (1973) The effect of human chorionic gonadotropin on plasma steroid levels in young and old men. Steroids 21: 583–592

    Article  CAS  PubMed  Google Scholar 

  74. Mulligan T et al. (1999) Two-week pulsatile gonadotropin releasing hormone infusion unmasks dual (hypothalamic and Leydig cell) defects in the healthy aging male gonadotropic axis. Eur J Endocrinol 141: 257–266

    Article  CAS  PubMed  Google Scholar 

  75. Mulligan T et al. (2001) Pulsatile iv infusion of recombinant human LH in leuprolide-suppressed men unmasks impoverished Leydig-cell secretory responsiveness to midphysiological LH drive in the aging male. J Clin Endocrinol Metab 86: 5547–5553

    Article  CAS  PubMed  Google Scholar 

  76. Veldhuis JD et al. (2005) Age diminishes the testicular steroidogenic response to repeated intravenous pulses of recombinant human LH during acute GnRH-receptor blockade in healthy men. Am J Physiol Endocrinol Metab 288: E775–E781

    Article  CAS  PubMed  Google Scholar 

  77. Wielgos M et al. (1998) Doppler flowmetry measurements in testicular artery of aging men [Polish]. Ginekol Pol 69: 537–540

    CAS  PubMed  Google Scholar 

  78. Regadera J et al. (1985) Testis, epididymis, and spermatic cord in elderly men. Correlation of angiographic and histologic studies with systemic arteriosclerosis. Arch Pathol Lab Med 109: 663–667

    CAS  PubMed  Google Scholar 

  79. Svartberg J et al. (2006) Low testosterone levels are associated with carotid atherosclerosis in men. J Intern Med 259: 576–582

    Article  CAS  PubMed  Google Scholar 

  80. Kaufman JM and Vermeulen A (2005) The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev 26: 833–876

    Article  CAS  PubMed  Google Scholar 

  81. Comhaire F and Mahmoud A (2006) Male aging: wear and tear. In: Andrology for the Clinician, Berlin and Heidelberg: Springer-Verlag

    Google Scholar 

  82. Meuleman EJH and Comhaire F (2006) Male aging: organ failure and common diseases of the ageing male. In: Andrology for the Clinician, Berlin and Heidelberg: Springer-Verlag

    Google Scholar 

  83. Derby CA et al. (2006) Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Aging Study. Clinical Endocrinology 65: 125–131

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mahmoud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoud, A., Comhaire, F. Mechanisms of Disease: late-onset hypogonadism. Nat Rev Urol 3, 430–438 (2006). https://doi.org/10.1038/ncpuro0560

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpuro0560

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing