Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of obesity in the pathogenesis of hypertension

Abstract

The rapid rise in the incidence and prevalence of obesity and the concomitant increase in the incidence and prevalence of hypertension have fueled investigation into the role of obesity in the pathogenesis of hypertension. The genetic background that predisposes obese individuals to hypertension is being elucidated, and the importance of adipose tissue as an endocrine organ in the pathogenesis of hypertension is increasingly being recognized. Visceral adipose tissue is critical in the production of pathologic cytokines that are thought to mediate obesity-induced hypertension. Changes in the types and levels of adipocytokines that result from the accumulation of aberrant adipose tissue directly leads to alterations in systemic vascular resistance, sodium retention and sympathetic nervous system activity. Key changes in adipocytokine levels seen in obesity-induced hypertension include increased leptin and adiponectin levels. Another important mechanism in obesity-induced hypertension is the generation of angiotensin II and direct stimulation of aldosterone production. The increased sympathetic nervous system activity seen in obesity-associated hypertension leads to increased renal sodium retention and increased systemic vascular resistance. Increased systemic vascular resistance can also occur directly in obese individuals through vascular fibrosis and lipid deposition. Obesity should no longer be simply considered as a marker of cardiovascular risk but should be regarded as an important and primary contributor to the pathophysiology of hypertension.

Key Points

  • Increased adipose tissue (i.e. obesity) is an important factor in the development of hypertension in susceptible individuals

  • Adipose tissue is an endocrine organ that produces many cytokines integral to the development of hypertension

  • Visceral adipose tissue contributes more to obesity-induced hypertension than does peripheral or subcutaneous adipose tissue

  • Obesity-induced hypertension is mediated in part through increases in production of components of the renin–angiotensin–aldosterone system by adipose tissue

  • Obesity leads to alterations in renal, vascular and sympathetic nervous system physiology that in turn induce and maintain increases in systolic blood pressure

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors associated with the induction of obesity-related hypertension.

Similar content being viewed by others

References

  1. Kannel WB et al. (1967) The relation of adiposity to blood pressure and development of hypertension: the Framingham study. Ann Intern Med 67: 48–59

    CAS  PubMed  Google Scholar 

  2. Neter JE et al. (2003) Influence of weight reduction on blood pressure: a meta-analysis of randomized combined trials. Hypertension 42: 878–884

    CAS  PubMed  Google Scholar 

  3. Horvath K et al. (2008) Long-term effects of weight-reducing interventions in hypertensive patients: systematic review and meta-analysis. Arch Intern Med 168: 571–580

    CAS  PubMed  Google Scholar 

  4. Stevens VJ et al. (2001) Long-term weight loss and changes in blood pressure: results of the Trials of Hypertension Prevention, phase II. Arch Intern Med 134: 1–11

    CAS  Google Scholar 

  5. Reisin E et al. (1978) Effect of weight loss without salt restriction on the reduction of blood pressure in overweight hypertensive patients. N Engl J Med 298: 1–6

    CAS  PubMed  Google Scholar 

  6. Winnicki M et al. (2006) Effect of body weight loss on blood pressure after 6 years of follow-up in stage 1 hypertension. Am J Hypertens 19: 1103–1109

    PubMed  Google Scholar 

  7. Masuo K et al. (2000) Weight gain-induced blood pressure elevation. Hypertension 35: 1135–1140

    CAS  PubMed  Google Scholar 

  8. Huang Z et al. (1998) Body weight, weight change and risk for hypertension in females. Ann Intern Med 128: 81–88

    CAS  PubMed  Google Scholar 

  9. Itoh K et al. (2002) Relationship between changes in serum leptin levels and blood pressure after weight loss. Hypertens Res 25: 881–886

    CAS  PubMed  Google Scholar 

  10. Israeli E et al. (2006) Prehypertension and obesity in adolescents: a population study. Am J Hypertens 19: 708–712

    PubMed  Google Scholar 

  11. Gentile CL et al. (2007) Cardiorespiratory fitness influences the blood pressure response to experimental weight gain. Obesity (Silver Spring) 15: 3005–3012

    CAS  Google Scholar 

  12. Stamler R et al. (1978) Weight and blood pressure: findings in hypertension screening of 1 million Americans. JAMA 240: 1607–1610

    CAS  PubMed  Google Scholar 

  13. [No authors listed] (1992) The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the Trials of Hypertension Prevention, Phase I. JAMA 267: 1213–1220

    Google Scholar 

  14. Sjöström L et al. (2004) Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. NEJM 351: 2683–2693

    PubMed  Google Scholar 

  15. Julius S et al. (2000) Overweight and hypertension: a 2-way street? Hypertension 35: 807–813

    CAS  PubMed  Google Scholar 

  16. Masuo K et al. (2005) β2- and β3-adrenergic receptor polymorphisms are related to the onset of weight gain and blood pressure elevation over 5 years. Circulation 111: 3429–3434

    CAS  PubMed  Google Scholar 

  17. Belo NO et al. (2008) Impairment of the natriuretic peptide system in follitropin receptor knockout mice and reversal by estradiol: implications for obesity-associated hypertension in menopause. Endocrinology 149: 1399–1406

    CAS  PubMed  Google Scholar 

  18. Tankó LB et al. (2004) Novel associations between bioavailable estradiol and adipokines in elderly women with different phenotypes of obesity: implications for atherogenesis. Circulation 110: 2246–2252

    PubMed  Google Scholar 

  19. Xie T et al. (1999) Characterization and implications of estrogenic down-regulation of human catechol-O-methyltransferase gene transcription. Mol Pharmacol 56: 31–38

    CAS  PubMed  Google Scholar 

  20. Lachman HM et al. (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6: 243–250

    CAS  PubMed  Google Scholar 

  21. Annerbrink K et al. (2008) Catechol O-methyltransferase val158-met polymorphism is associated with abdominal obesity and blood pressure in men. Metabolism 57: 708–711

    CAS  PubMed  Google Scholar 

  22. Beamer BA et al. (1998) Association of the Pro12Ala variant in the peroxisome proliferator-activated receptor-gamma2 gene with obesity in two Caucasian populations. Diabetes 47: 1806–1808

    CAS  PubMed  Google Scholar 

  23. Douglas JA et al. (2001) The peroxisome proliferator-activated receptor-gamma2 Pro12A1a variant: association with type 2 diabetes and trait differences. Diabetes 50: 886–890

    CAS  PubMed  Google Scholar 

  24. Stefanski A et al. (2006) Association between the Pro12Ala variant of the peroxisome proliferator-activated receptor-gamma2 gene and increased 24-h diastolic blood pressure in obese patients with type II diabetes. J Hum Hypertens 20: 684–692

    CAS  PubMed  Google Scholar 

  25. Ostgren CJ et al. (2003) Peroxisome proliferator-activated receptor-gammaPro12Ala polymorphism and the association with blood pressure in type 2 diabetes: Skaraborg Hypertension and Diabetes Project. J Hypertens 21: 1657–1662

    PubMed  Google Scholar 

  26. Rosmond R et al. (2000) Hypertension in obesity and the leptin receptor gene locus. J Clin Endocrinol Metab 85: 3126–3131

    CAS  PubMed  Google Scholar 

  27. Guízar-Mendoza JM et al. (2005) Association analysis of the Gln223Arg polymorphism in the human leptin receptor gene, and traits related to obesity in Mexican adolescents. J Hum Hypertens 19: 341–346

    PubMed  Google Scholar 

  28. Strazzullo P et al. (2003) Genetic variation in the renin-angiotensin system and abdominal adiposity in men: the Olivetti Prospective Heart Study. Ann Intern Med 138: 17–23

    CAS  PubMed  Google Scholar 

  29. Kostis JB et al. (2002) Association of angiotensin-converting enzyme DD genotype with blood pressure sensitivity to weight loss. Am Heart J 144: 625–629

    CAS  PubMed  Google Scholar 

  30. Guagnano MT et al. (2001) Large waist circumference and risk of hypertension. Int J Obes Relat Metab Disord 25: 1360–1364

    CAS  PubMed  Google Scholar 

  31. Ferrannini E et al. (1997) Insulin resistance, hyperinsulinemia, and blood pressure: role of age and obesity. European Group for the Study of Insulin Resistance. Hypertension 30: 1144–1149

    CAS  PubMed  Google Scholar 

  32. Doll S et al. (2002) Body mass index, abdominal adiposity and blood pressure: consistency of their association across developing and developed counties. Int J Obes Relat Metab Disord 26: 48–57

    CAS  PubMed  Google Scholar 

  33. Kanai H et al. (1990) Close correlation of intra-abdominal fat accumulation to hypertension in obese women. Hypertension 16: 484–490

    CAS  PubMed  Google Scholar 

  34. Bevilacqua S et al. (1987) Acute elevation of free fatty acid levels leads to hepatic insulin resistance in obese subjects. Metabolism 36: 502–506

    CAS  PubMed  Google Scholar 

  35. Hamdy O et al. (2006) Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev 2: 367–373

    PubMed  Google Scholar 

  36. Einstein FH et al. (2005) Differential responses of visceral and subcutaneous fat depots to nutrients. Diabetes 54: 672–678

    CAS  PubMed  Google Scholar 

  37. Vohl MC et al. (2004) A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes Res 12: 1217–1222

    CAS  PubMed  Google Scholar 

  38. Weisberg SP et al. (2006) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796–1808

    Google Scholar 

  39. Fantuzzi G (2005) Adipose tissue, adipokines and inflammation. J Allergy Clin Immunol 115: 911–919

    CAS  PubMed  Google Scholar 

  40. Buchwald H et al. (2004) Bariatric surgery: a systematic review and meta-analysis. JAMA 292: 1724–1737 (published correction appears in JAMA 293: 1728)

    CAS  PubMed  Google Scholar 

  41. Sugerman HJ et al. (2003) Diabetes and hypertension in severe obesity and effects of gastric bypass-induced weight loss. Ann Surg 237: 751–756

    PubMed  PubMed Central  Google Scholar 

  42. Tilg H and Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6: 772–783

    CAS  PubMed  Google Scholar 

  43. Katagiri H et al. (2007) Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ Res 101: 27–39

    CAS  PubMed  Google Scholar 

  44. Sarafidis PA and Bakris GL (2007) Non-esterified fatty acids and blood pressure elevation: a mechanism for hypertension in subjects with obesity/insulin resistance? J Hum Hypertens 21: 12–19

    CAS  PubMed  Google Scholar 

  45. Xu H et al. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112: 1821–1830

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gavrilova O et al. (2000) Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 105: 271–278

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bays H et al. (2004) Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89: 463–478

    CAS  PubMed  Google Scholar 

  48. Kawanami D et al. (2004) Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun 314: 415–419

    CAS  PubMed  Google Scholar 

  49. Boucher J et al. (2005) Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146: 1764–1771

    CAS  PubMed  Google Scholar 

  50. Ishida J et al. (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem 279: 26274–26279

    CAS  PubMed  Google Scholar 

  51. Hotamisligil GS et al. (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95: 2409–2415

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Goyenechea E et al. (2007) Impact of interleukin 6 -174G>C polymorphism on obesity-related metabolic disorders in people with excess in body weight. Metabolism 56: 1643–1648

    CAS  PubMed  Google Scholar 

  53. Mark AL et al. (1999) Contrasting blood pressure effects of obesity in leptin-deficient ob/ob mice and agouti yellow obese mice. J Hypertens 17: 1949–1953

    CAS  PubMed  Google Scholar 

  54. Mariani LM et al. (2005) Transient increase of plasma ghrelin after laparoscopic adjustable gastric banding in morbid obesity. Horm Metab Res 37: 242–254

    CAS  PubMed  Google Scholar 

  55. Rosmond R et al. (2000) Hypertension in obesity and the leptin receptor gene locus. J Clin Endocrinol Metab 85: 3126–3131

    CAS  PubMed  Google Scholar 

  56. Considine RV (2005) Human leptin: an adipocyte hormone with weight-regulatory and endocrine functions. Semin Vasc Med 5: 15–24

    PubMed  Google Scholar 

  57. Vecchione C et al. (2003) Cooperation between insulin and leptin in the modulation of vascular tone. Hypertension 42: 166–170

    CAS  PubMed  Google Scholar 

  58. Brook RD et al. (2007) Blood pressure and vascular effects of leptin in humans. Metab Syndr Relat Disord 5: 270–274

    CAS  PubMed  Google Scholar 

  59. Kadowaki T et al. (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116: 1784–1792

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chow W-S et al. (2007) Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study. Hypertension 49: 1455–1461

    CAS  PubMed  Google Scholar 

  61. Torigoe M et al. (2007) Impact of the high-molecular-weight form of adiponectin on endothelial function in healthy young men. Clin Endocrinol (Oxf) 67: 276–281

    CAS  Google Scholar 

  62. Ouchi N et al. (2003) Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 42: 231–234

    CAS  PubMed  Google Scholar 

  63. Ouedraogo R et al. (2007) Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo . J Clin Invest 117: 1718–1726

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cooper R et al. (1997) ACE, angiotensinogen and obesity; a potential pathway leading to hypertension. J Hum Hypertens 11: 107–111

    CAS  PubMed  Google Scholar 

  65. Massiera F et al. (2001) Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J 15: 2727–2729

    CAS  PubMed  Google Scholar 

  66. Goodfriend TL et al. (1999) Visceral obesity and insulin resistance are associated with plasma aldosterone levels in women. Obes Res 7: 355–362

    CAS  PubMed  Google Scholar 

  67. Bochud M et al. (2006) Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension 48: 239–245

    CAS  PubMed  Google Scholar 

  68. Kidambi S et al. (2007) Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension 49: 704–711

    CAS  PubMed  Google Scholar 

  69. Goodfriend TL et al. (2002) Oxidized products of linoleic acid stimulate adrenal steroidogenesis. Endocr Res 28: 325–330

    CAS  PubMed  Google Scholar 

  70. Ehrhart-Bornstein M et al. (2003) Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci USA 100: 14211–14216

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Engeli S et al. (2005) Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45: 356–362

    CAS  PubMed  Google Scholar 

  72. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26 (Suppl 1): S5–S20

  73. Freitas RR et al. (2007) Sympathetic and renin-angiotensin systems contribute to increased blood pressure in sucrose-fed rats. Am J Hypertens 20: 692–698

    CAS  PubMed  Google Scholar 

  74. Ward KD et al. (1996) Influence of insulin, sympathetic nervous system activity, and obesity on blood pressure: the Normative Aging Study. J Hypertens 14: 301–308

    CAS  PubMed  Google Scholar 

  75. Johansson ME et al. (2008) Hyperinsulinemic rats are normotensive but sensitized to angiotensin II. Am J Physiol Regul Integr Comp Physiol 294: R1240–R1247

    CAS  PubMed  Google Scholar 

  76. Miller JH and Bogdonoff MD (1954) Antidiuresis associated with administration of insulin. J Appl Physiol 6: 509–512

    CAS  PubMed  Google Scholar 

  77. Sechi LA and Bartoli E (1996) Molecular mechanisms of insulin resistance in arterial hypertension. Blood Press Suppl 1: 47–54

    CAS  PubMed  Google Scholar 

  78. Strazullo P et al. (2006) Abnormalities of renal sodium handling in the metabolic syndrome: results of the Olivetti Heart Study. J Hypertens 24: 1633–1639

    Google Scholar 

  79. Ter Maaten et al. (1999) Insulin's acute effects on glomerular filtration rate correlate with insulin sensitivity whereas insulin's acute effects on proximal tubular sodium reabsorption correlation with salt sensitivity in normal subjects. Nephrol Dial Transplant 14: 2357–2363

    Google Scholar 

  80. Lurbe E et al. (2000) Obesity modifies the relationship between blood pressure and natriuresis in children. Blood Pressure Monit 5: 275–280

    CAS  Google Scholar 

  81. Reaven GM et al. (1996) Hypertension and associated metabolic abnormalities—the role of insulin resistance and the sympathoadrenal system. N Engl J Med 334: 374–381

    CAS  PubMed  Google Scholar 

  82. Alvarez GE et al. (2004) Subcutaneous obesity is not associated with sympathetic neural activation. Am J Physiol Heart Circ Physiol 287: H414–H418

    CAS  PubMed  Google Scholar 

  83. Alvarez GE et al. (2002) Sympathetic neural activation in visceral obesity. Circulation 106: 2533–2536

    PubMed  Google Scholar 

  84. Scherrer U et al. (1994) Body fat and sympathetic nerve activity in healthy subjects. Circulation 89: 2634–2640

    CAS  PubMed  Google Scholar 

  85. Huggett RJ et al. (2004) Sympathetic neural activation in nondiabetic metabolic syndrome and its further augmentation by hypertension. Hypertension 44: 847–852

    CAS  PubMed  Google Scholar 

  86. Weyer C et al. (2000) Ethnic differences in insulinemia and sympathetic tone as links between obesity and blood pressure. Hypertension 36: 531–537

    CAS  PubMed  Google Scholar 

  87. Grassi G et al. (1998) Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation 97: 2037–2042

    CAS  PubMed  Google Scholar 

  88. Grassi G et al. (2004) Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens 22: 2363–2369

    CAS  PubMed  Google Scholar 

  89. Trombetta IC et al. (2003) Weight loss improves neurovascular and muscle metaboreflex control in obesity. Am J Physiol Heart Circ Physiol 285: H974–H982

    CAS  PubMed  Google Scholar 

  90. Vaz M et al. (1997) Regional sympathetic nervous system activity and oxygen consumption in obese normotensive human subjects. Circulation 96: 3423–3429

    CAS  PubMed  Google Scholar 

  91. Wofford MR et al. (2001) Antihypertensive effect of alpha- and beta-adrenergic blockade in obese and lean hypertensive subjects. Am J Hypertens 14: 694–698

    CAS  PubMed  Google Scholar 

  92. Pasquali R et al. (2006) The hypothalamic-pituitary-adrenal axis activity in obesity and the metabolic syndrome. Ann NY Acad Sci 1083: 111–128

    CAS  PubMed  Google Scholar 

  93. Muntzel M et al. (1994) Anteroventral third ventricle lesions abolish lumbar sympathetic responses to insulin. Hypertension 23: 1059–1062

    CAS  PubMed  Google Scholar 

  94. Narkiewicz K et al. (1999) Nocturnal continuous positive airway pressure decreases daytime sympathetic traffic in obstructive sleep apnea. Circulation 100: 2332–2335

    CAS  PubMed  Google Scholar 

  95. Ghiadoni L et al. (2008) Metabolic syndrome and vascular alterations in normotensive subjects at risk of diabetes mellitus. Hypertension 51: 440–445

    CAS  PubMed  Google Scholar 

  96. Kim JA et al. (2006) Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological functions. Circulation 113: 1888–1904

    PubMed  Google Scholar 

  97. Rossi R et al. (2004) Flow-mediated vasodilatation and the risk of developing hypertension in healthy postmenopausal women. J Am Coll Cardiol 44: 1636–1640

    PubMed  Google Scholar 

  98. Mackey RH et al. (2002) Correlates of aortic stiffness in elderly individuals: a subgroup of the Cardiovascular Health Study. Am J Hypertens 15: 16–23

    PubMed  Google Scholar 

  99. Wildman RP et al. (2003) Measures of obesity are associated with vascular stiffness in young and older adults. Hypertension 42: 468–473

    CAS  PubMed  Google Scholar 

  100. Zebekakis PR et al. (2005) Obesity is associated with increased arterial stiffness from adolescence until old age. J Hypertens 23: 1839–1846

    CAS  PubMed  Google Scholar 

  101. Yamada R et al. (2007) Histological characteristics of plaque with ultrasonic attenuation: a comparison between intravascular ultrasound and histology. J Cardiol 50: 223–228

    PubMed  Google Scholar 

  102. Foster MC et al. (2008) Overweight, obesity, and the development of stage 3 CKD: the Framingham Heart Study. Am J Kidney Dis 52: 39–48

    PubMed  PubMed Central  Google Scholar 

  103. Chen HM et al. (2008) Obesity-related glomerulopathy in China: a case series of 90 patients. Am J Kidney Dis 52: 58–65

    PubMed  Google Scholar 

  104. Ryu S et al. (2008) Changes in body weight predict CKD in healthy men. J Am Soc Nephrol 19: 1798–1805

    PubMed  PubMed Central  Google Scholar 

  105. Freedman BI et al. (2004) A genome scan for ESRD in black families enriched for nondiabetic nephropathy. J Am Soc Nephrol 15: 2719–2727

    CAS  PubMed  Google Scholar 

  106. Wolf G et al. (1999) Leptin stimulates proliferation and TGF-beta expression in renal glomerular endothelial cells: potential role in glomerulosclerosis. Kidney Int 56: 860–872

    CAS  PubMed  Google Scholar 

  107. Wu Y et al. (2006) Obesity-related glomerulopathy: insights from gene expression profiles of the glomeruli derived from renal biopsy samples. Endocrinology 147: 44–50

    CAS  PubMed  Google Scholar 

  108. Jiang T et al. (2005) Diet induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J Biol Chem 280: 32317–32325

    CAS  PubMed  Google Scholar 

  109. Serra A et al. (2008) Renal injury in the extremely obese patients with normal renal function. Kidney Int 73: 947–955

    CAS  PubMed  Google Scholar 

  110. Kambham N et al. (2001) Obesity-related glomerulopathy: an emerging epidemic. Kidney Int 59: 1498–1509

    CAS  PubMed  Google Scholar 

  111. Goodfriend TL and Calhoun DA (2004) Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy. Hypertension 43: 518–524

    CAS  PubMed  Google Scholar 

  112. Peppard PE et al. (2000) Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 284: 3015–3021

    CAS  PubMed  Google Scholar 

  113. Malhotra A and White DP (2002) Obstructive sleep apnoea. Lancet 360: 237–245

    PubMed  Google Scholar 

  114. Weiss JW et al. (1996) Hemodynamic consequences of obstructive sleep apnea. Sleep 19: 388–397

    CAS  PubMed  Google Scholar 

  115. Silverberg DS et al. (1997) Sleep related breathing disorders are common contributing factors to the production of essential hypertension but are neglected, underdiagnosed, and undertreated. Am J Hypertens 10: 1319–1325

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Linas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogaert, Y., Linas, S. The role of obesity in the pathogenesis of hypertension. Nat Rev Nephrol 5, 101–111 (2009). https://doi.org/10.1038/ncpneph1022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph1022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing