Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: advances in liver imaging

Abstract

The role of diagnostic imaging in the assessment of liver disease continues to gain in importance. The classic techniques used for liver imaging are ultrasonography, CT and MRI. In the past decade, there have been significant advances in all three techniques. In this article, we discuss the advances in ultrasonography, CT and MRI that have improved assessment of focal and diffuse liver disease, including the development of hardware, software, processing algorithms and procedural innovations.

Key Points

  • The accuracy of ultrasonography, CT and MRI for the detection and characterization of focal and diffuse liver disease has been markedly improved by technical innovations in the past decade

  • Improvements in gray-scale ultrasonography (such as tissue harmonic imaging) and the introduction of contrast ultrasonography have been the technical mainstay of advances in this field

  • The major development for CT has been the introduction of multidetector helical technology—a prerequisite for fast acquisition of high-resolution images that also provides the option for high-quality image reformations in arbitrary planes

  • Advances in MRI have been even more significant than those in ultrasonography and CT, and include the introduction of rapid, high-resolution imaging, the adoption of magnetic resonance spectroscopy and diffusion-weighted imaging, as well as the development of cell-specific contrast agents

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue harmonic imaging of the liver
Figure 2: Contrast ultrasonography images of focal nodular hyperplasia
Figure 3: Contrast ultrasonography images of liver metastases derived from a gastrinoma in the pancreatic tail
Figure 4: Multiphase imaging scans obtained with axial multidetector helical CT in a patient with alcoholic cirrhosis
Figure 5: Multidetector helical CT can be used to assess hepatic arterial vasculature, as in these maximum-intensity projections of contrast-enhanced images in the arterial phase
Figure 6: Multidetector helical CT and chemical-shift MRI scans from a patient with elevated liver enzyme and bilirubin concentrations
Figure 7: Setup for respiratory triggering, using a navigator sequence
Figure 8: MRI scan that shows hemosiderosis in a patient with plasmocytoma

Similar content being viewed by others

References

  1. Starritt HC et al. (1986) The development of harmonic distortion in pulsed finite-amplitude ultrasound passing through liver. Phys Med Biol 31: 1401–1409

    Article  CAS  PubMed  Google Scholar 

  2. Sodhi KS et al. (2005) Role of tissue harmonic imaging in focal hepatic lesions: comparison with conventional sonography. J Gastroenterol Hepatol 20: 1488–1493

    Article  PubMed  Google Scholar 

  3. Choudhry S et al. (2000) Comparison of tissue harmonic imaging with conventional US in abdominal disease. Radiographics 20: 1127–1135

    Article  CAS  PubMed  Google Scholar 

  4. Hann LE et al. (1999) Hepatic sonography: comparison of tissue harmonic and standard sonography techniques. AJR Am J Roentgenol 173: 201–206

    Article  CAS  PubMed  Google Scholar 

  5. Jang HJ et al. (2000) Ultrasonographic evaluation of focal hepatic lesions: comparison of pulse inversion harmonic, tissue harmonic, and conventional imaging techniques. J Ultrasound Med 19: 293–299

    Article  CAS  PubMed  Google Scholar 

  6. Albrecht T et al. (2004) Guidelines for the use of contrast agents in ultrasound. Ultraschall Med 25: 249–256

    Article  CAS  PubMed  Google Scholar 

  7. Harvey CJ et al. (2000) Pulse-inversion mode imaging of liver specific microbubbles: improved detection of subcentimetre metastases. Lancet 355: 807–808

    Article  CAS  PubMed  Google Scholar 

  8. Dietrich CF et al. (2006) Assessment of metastatic liver disease in patients with primary extrahepatic tumors by contrast-enhanced sonography versus CT and MRI. World J Gastroenterol 12: 1699–1705

    Article  PubMed  PubMed Central  Google Scholar 

  9. Konopke R et al. (2007) Contrast-enhanced ultrasonography to detect liver metastases: a prospective trial to compare transcutaneous unenhanced and contrast-enhanced ultrasonography in patients undergoing laparotomy. Int J Colorectal Dis 22: 201–207

    Article  CAS  PubMed  Google Scholar 

  10. Therasse P et al. (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92: 205–216

    Article  CAS  PubMed  Google Scholar 

  11. Leen E et al. (2006) Potential value of contrast-enhanced intraoperative ultrasonography during partial hepatectomy for metastases: an essential investigation before resection? Ann Surg 243: 236–240

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dietrich CF et al. (2004) Improved characterisation of histologically proven liver tumours by contrast enhanced ultrasonography during the portal venous and specific late phase of SHU 508A. Gut 53: 401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicolau C et al. (2006) Importance of evaluating all vascular phases on contrast-enhanced sonography in the differentiation of benign from malignant focal liver lesions. AJR Am J Roentgenol 186: 158–167

    Article  PubMed  Google Scholar 

  14. Schlottmann K et al. (2004) Contrast-enhanced ultrasound allows for interventions of hepatic lesions which are invisible on convential B-mode. Z Gastroenterol 42: 303–310

    Article  CAS  PubMed  Google Scholar 

  15. Strobel D et al. (2005) Contrast-enhanced sonography for the characterisation of hepatocellular carcinomas—correlation with histological differentiation. Ultraschall Med 26: 270–276

    Article  CAS  PubMed  Google Scholar 

  16. Blomley MJ et al. (1998) Liver vascular transit time analyzed with dynamic hepatic venography with bolus injections of an US contrast agent: early experience in seven patients with metastases. Radiology 209: 862–866

    Article  CAS  PubMed  Google Scholar 

  17. Bernatik T et al. (2004) Hepatic transit time of an echo enhancer: an indicator of metastatic spread to the liver. Eur J Gastroenterol Hepatol 16: 313–317

    Article  PubMed  Google Scholar 

  18. Albrecht T et al. (1999) Non-invasive diagnosis of hepatic cirrhosis by transit-time analysis of an ultrasound contrast agent. Lancet 353: 1579–1583

    Article  CAS  PubMed  Google Scholar 

  19. Blomley MJ et al. (2003) Liver microbubble transit time compared with histology and Child–Pugh score in diffuse liver disease: a cross-sectional study. Gut 52: 1188–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou X et al. (2005) Hepatic transit time: indicator of the therapeutic response to radiofrequency ablation of liver tumours. Br J Radiol 78: 433–436

    Article  CAS  PubMed  Google Scholar 

  21. Prokop M (2003) Multislice CT: technical principles and future trends. Eur Radiol 13 (Suppl 5): M3–M13

    Article  PubMed  Google Scholar 

  22. Schima W et al. (2005) Multidetector computed tomography of the liver [German]. Radiologe 45: 15–23

    Article  CAS  PubMed  Google Scholar 

  23. Kopka L et al. (1996) Dual-phase helical CT of the liver: effects of bolus tracking and different volumes of contrast material. Radiology 201: 321–326

    Article  CAS  PubMed  Google Scholar 

  24. Semelka RC et al. (2001) Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 13: 397–401

    Article  CAS  PubMed  Google Scholar 

  25. Scott DJ et al. (2001) Dual phase helical CT versus portal venous phase CT for the detection of colorectal liver metastases: correlation with intra-operative sonography, surgical and pathological findings. Clin Radiol 56: 235–242

    Article  CAS  PubMed  Google Scholar 

  26. Semelka RC and Helmberger TK (2001) Contrast agents for MR imaging of the liver. Radiology 218: 27–38

    Article  CAS  PubMed  Google Scholar 

  27. Han JK et al. (2002) Cholangiocarcinoma: pictorial essay of CT and cholangiographic findings. Radiographics 22: 173–187

    Article  PubMed  Google Scholar 

  28. Kim SH et al. (2005) Ferucarbotran-enhanced MRI versus triple-phase MDCT for the preoperative detection of hepatocellular carcinoma. AJR Am J Roentgenol 184: 1069–1076

    Article  PubMed  Google Scholar 

  29. Kim YK et al. (2006) Hepatocellular carcinoma in patients with chronic liver disease: comparison of SPIO-enhanced MR imaging and 16-detector row CT. Radiology 238: 531–541

    Article  PubMed  Google Scholar 

  30. Kang BK et al. (2003) Preoperative depiction of hepatocellular carcinoma: ferumoxides-enhanced MR imaging versus triple-phase helical CT. Radiology 226: 79–85

    Article  PubMed  Google Scholar 

  31. Hori M et al. (2002) Detection of hypervascular hepatocellular carcinoma: comparison of SPIO-enhanced MRI with dynamic helical CT. J Comput Assist Tomogr 26: 701–710

    Article  PubMed  Google Scholar 

  32. Kinkel K et al. (2002) Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology 224: 748–756

    Article  PubMed  Google Scholar 

  33. Ward J et al. (1999) Hepatic lesion detection: comparison of MR imaging after the administration of superparamagnetic iron oxide with dual-phase CT by using alternative-free response receiver operating characteristic analysis. Radiology 210: 459–466

    Article  CAS  PubMed  Google Scholar 

  34. Robinson PJ (2000) Imaging liver metastases: current limitations and future prospects. Br J Radiol 73: 234–241

    Article  CAS  PubMed  Google Scholar 

  35. Winterer J et al. (2006) Detection and characterization of benign focal liver lesions with multislice CT. Eur Radiol 16: 2427–2443

    Article  CAS  PubMed  Google Scholar 

  36. Bitschnau S et al. (2004) CT-angiography with a 16-row CT scanner for perioperative evaluation of the hepatic arteries [German]. Rofo 176: 1634–1640

    Article  CAS  PubMed  Google Scholar 

  37. Guven K and Acunas B (2004) Multidetector computed tomography angiography of the abdomen. Eur J Radiol 52: 44–55

    Article  PubMed  Google Scholar 

  38. Atasoy C and Akyar S (2004) Multidetector CT: contributions in liver imaging. Eur J Radiol 52: 2–17

    Article  PubMed  Google Scholar 

  39. Hamer OW et al. (2005) Imaging features of perivascular fatty infiltration of the liver: initial observations. Radiology 237: 159–169

    Article  PubMed  Google Scholar 

  40. Limanond P et al. (2004) Macrovesicular hepatic steatosis in living related liver donors: correlation between CT and histologic findings. Radiology 230: 276–280

    Article  PubMed  Google Scholar 

  41. Ricci C et al. (1997) Noninvasive in vivo quantitative assessment of fat content in human liver. J Hepatol 27: 108–113

    Article  CAS  PubMed  Google Scholar 

  42. Cheng Y et al. (2001) Assessment of donor fatty livers for liver transplantation. Transplantation 71: 1206–1207

    Article  PubMed  Google Scholar 

  43. Giacomuzzi SM et al. (2001) Radiation exposure in single slice and multi-slice spiral CT (a phantom study) [German]. Rofo 173: 643–649

    Article  CAS  PubMed  Google Scholar 

  44. Kalra MK et al. (2003) Multislice CT: update on radiation and screening. Eur Radiol 13 (Suppl 5): M129–M133

    Article  PubMed  Google Scholar 

  45. Hundt W et al. (2005) Dose reduction in multislice computed tomography. J Comput Assist Tomogr 29: 140–147

    Article  PubMed  Google Scholar 

  46. Petsch R et al. (1999) New techniques and pulse sequences in MRI of the liver [German]. Radiologe 39: 662–670

    Article  CAS  PubMed  Google Scholar 

  47. McKenzie CA et al. (2004) Shortening MR image acquisition time for volumetric interpolated breath-hold examination with a recently developed parallel imaging reconstruction technique: clinical feasibility. Radiology 230: 589–594

    Article  PubMed  Google Scholar 

  48. Dobritz M et al. (2002) VIBE with parallel acquisition technique—a novel approach to dynamic contrast-enhanced MR imaging of the liver [German]. Rofo 174: 738–741

    Article  CAS  PubMed  Google Scholar 

  49. Zech CJ et al. (2004) Modern visualization of the liver with MRT. Current trends and future perspectives [German]. Radiologe 44: 1160–1169

    Article  CAS  PubMed  Google Scholar 

  50. Ito K et al. (1999) MR imaging of the liver: techniques and clinical applications. Eur J Radiol 32: 2–14

    Article  CAS  PubMed  Google Scholar 

  51. Rofsky NM et al. (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212: 876–884

    Article  CAS  PubMed  Google Scholar 

  52. Lee VS et al. (2000) Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality. Radiology 215: 365–372

    Article  CAS  PubMed  Google Scholar 

  53. Sodickson A et al. (2006) Three-dimensional fast-recovery fast spin-echo MRCP: comparison with two-dimensional single-shot fast spin-echo techniques. Radiology 238: 549–559

    Article  PubMed  Google Scholar 

  54. Wallnoefer AM et al. (2005) Comparison of 2D and 3D sequences for MRCP. Clinical value of the different techniques [German]. Radiologe 45: 993–1003

    Article  CAS  PubMed  Google Scholar 

  55. Katayama M et al. (2001) Fat-suppressed T2-weighted MRI of the liver: comparison of respiratory-triggered fast spin-echo, breath-hold single-shot fast spin-echo, and breath-hold fast-recovery fast spin-echo sequences. J Magn Reson Imaging 14: 439–449

    Article  CAS  PubMed  Google Scholar 

  56. Zech CJ et al. (2004) High-resolution MR-imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion correction and respiratory triggering. J Magn Reson Imaging 20: 443–450

    Article  PubMed  Google Scholar 

  57. Colagrande S et al. (2006) Magnetic resonance diffusion-weighted imaging: extraneurological applications. Radiol Med (Torino) 111: 392–419

    Article  CAS  Google Scholar 

  58. Koinuma M et al. (2005) Apparent diffusion coefficient measurements with diffusion-weighted magnetic resonance imaging for evaluation of hepatic fibrosis. J Magn Reson Imaging 22: 80–85

    Article  PubMed  Google Scholar 

  59. Naganawa S et al. (2005) Diffusion-weighted imaging of the liver: technical challenges and prospects for the future. Magn Reson Med Sci 4: 175–186

    Article  PubMed  Google Scholar 

  60. Koh DM et al. (2006) Colorectal hepatic metastases: quantitative measurements using single-shot echo-planar diffusion-weighted MR imaging. Eur Radiol 16: 1898–905

    Article  CAS  PubMed  Google Scholar 

  61. Sun XJ et al. (2005) Quantitative evaluation of diffusion-weighted magnetic resonance imaging of focal hepatic lesions. World J Gastroenterol 11: 6535–6537

    Article  PubMed  PubMed Central  Google Scholar 

  62. Solga SF et al. (2005) Hepatic 31P magnetic resonance spectroscopy: a hepatologist's user guide. Liver Int 25: 490–500

    Article  PubMed  Google Scholar 

  63. Khan SA et al. (2005) In vivo and in vitro nuclear magnetic resonance spectroscopy as a tool for investigating hepatobiliary disease: a review of H and P MRS applications. Liver Int 25: 273–281

    Article  CAS  PubMed  Google Scholar 

  64. Longo R et al. (1993) Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Invest Radiol 28: 297–302

    Article  CAS  PubMed  Google Scholar 

  65. Thomsen C et al. (1994) Quantification of liver fat using magnetic resonance spectroscopy. Magn Reson Imaging 12: 487–495

    Article  CAS  PubMed  Google Scholar 

  66. Qayyum A et al. (2005) Accuracy of liver fat quantification at MR imaging: comparison of out-of-phase gradient-echo and fat-saturated fast spin-echo techniques—initial experience. Radiology 237: 507–511

    Article  PubMed  Google Scholar 

  67. Hussain HK et al. (2005) Hepatic fat fraction: MR imaging for quantitative measurement and display—early experience. Radiology 237: 1048–1055

    Article  PubMed  Google Scholar 

  68. Rinella ME et al. (2003) Dual-echo, chemical shift gradient-echo magnetic resonance imaging to quantify hepatic steatosis: implications for living liver donation Liver Transpl 9: 851–856

    Article  PubMed  Google Scholar 

  69. Mortele KJ and Ros PR (2001) Imaging of diffuse liver disease. Semin Liver Dis 21: 195–212

    Article  CAS  PubMed  Google Scholar 

  70. Alustiza JM et al. (2004) MR quantification of hepatic iron concentration. Radiology 230: 479–484

    Article  PubMed  Google Scholar 

  71. Gandon Y et al. (2004) Non-invasive assessment of hepatic iron stores by MRI. Lancet 363: 357–362

    Article  CAS  PubMed  Google Scholar 

  72. Ba-Ssalamah A et al. (2004) MRT of the liver. Clinical significance of nonspecific and liver-specific MRT contrast agents [German]. Radiologe 44: 1170–1184

    Article  CAS  PubMed  Google Scholar 

  73. Braga L et al. (2004) Modern hepatic imaging. Surg Clin North Am 84: 375–400

    Article  PubMed  Google Scholar 

  74. Tanimoto A and Kuribayashi S (2006) Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma. Eur J Radiol 58: 200–216

    Article  PubMed  Google Scholar 

  75. Bluemke DA et al. (2000) Detection of hepatic lesions in candidates for surgery: comparison of ferumoxides-enhanced MR imaging and dual-phase helical CT. AJR Am J Roentgenol 175: 1653–1658

    Article  CAS  PubMed  Google Scholar 

  76. Tanimoto A et al. (2005) Superparamagnetic iron oxide-enhanced MR imaging for focal hepatic lesions: a comparison with CT during arterioportography plus CT during hepatic arteriography. J Gastroenterol 40: 371–380

    Article  PubMed  Google Scholar 

  77. Choi D et al. (2001) Preoperative detection of hepatocellular carcinoma: ferumoxides-enhanced MR imaging versus combined helical CT during arterial portography and CT hepatic arteriography. AJR Am J Roentgenol 176: 475–482

    Article  CAS  PubMed  Google Scholar 

  78. Kwak HS et al. (2005) Detection of hepatocellular carcinoma: comparison of ferumoxides-enhanced and gadolinium-enhanced dynamic three-dimensional volume interpolated breath-hold MR imaging. Eur Radiol 15: 140–147

    Article  PubMed  Google Scholar 

  79. Kwak HS et al. (2004) Preoperative detection of hepatocellular carcinoma: comparison of combined contrast-enhanced MR imaging and combined CT during arterial portography and CT hepatic arteriography. Eur Radiol 14: 447–457

    Article  PubMed  Google Scholar 

  80. Kim YK et al. (2006) Comparison of gadobenate dimeglumine-enhanced dynamic MRI and 16-MDCT for the detection of hepatocellular carcinoma. AJR Am J Roentgenol 186: 149–157

    Article  PubMed  Google Scholar 

  81. Stoker J et al. (2002) Prospective comparative study of spiral computed tomography and magnetic resonance imaging for detection of hepatocellular carcinoma. Gut 51: 105–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huppertz A et al. (2005) Enhancement of focal liver lesions at gadoxetic acid-enhanced MR imaging: correlation with histopathologic findings and spiral CT—initial observations. Radiology 234: 468–478

    Article  PubMed  Google Scholar 

  83. Stroszczynski C et al. (2004) Current status of MRI diagnostics with liver-specific contrast agents. Gd-EOB-DTPA and Gd-BOPTA [German]. Radiologe 44: 1185–1191

    Article  CAS  PubMed  Google Scholar 

  84. Reimer P et al. (2004) Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiol 14: 559–578

    Article  PubMed  Google Scholar 

  85. Bollow M et al. (1997) Gadolinium-ethoxybenzyl-DTPA as a hepatobiliary contrast agent for use in MR cholangiography: results of an in vivo phase-I clinical evaluation. Eur Radiol 7: 126–132

    Article  CAS  PubMed  Google Scholar 

  86. Huppertz A et al. (2004) Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology 230: 266–275

    Article  PubMed  Google Scholar 

  87. Carlos RC et al. (2002) Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid as an intrabiliary contrast agent: preliminary assessment. AJR Am J Roentgenol 179: 87–92

    Article  PubMed  Google Scholar 

  88. Ryeom HK et al. (2004) Quantitative evaluation of liver function with MRI using Gd-EOB-DTPA. Korean J Radiol 5: 231–239

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vitellas KM et al. (2001) Cirrhosis: spectrum of findings on unenhanced and dynamic gadolinium-enhanced MR imaging. Abdom Imaging 26: 601–615

    Article  CAS  PubMed  Google Scholar 

  90. Ward J et al. (2000) Hepatocellular carcinoma in the cirrhotic liver: double-contrast MR imaging for diagnosis. Radiology 216: 154–162

    Article  CAS  PubMed  Google Scholar 

  91. Bhartia B et al. (2003) Hepatocellular carcinoma in cirrhotic livers: double-contrast thin-section MR imaging with pathologic correlation of explanted tissue. AJR Am J Roentgenol 180: 577–584

    Article  PubMed  Google Scholar 

  92. Halavaara J et al. (2002) Efficacy of sequential use of superparamagnetic iron oxide and gadolinium in liver MR imaging. Acta Radiol 43: 180–185

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okka W Hamer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamer, O., Schlottmann, K., Sirlin, C. et al. Technology Insight: advances in liver imaging. Nat Rev Gastroenterol Hepatol 4, 215–228 (2007). https://doi.org/10.1038/ncpgasthep0766

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep0766

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing