Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of transcriptional regulators in central control of appetite and body weight

Abstract

Individuals who live in industrialized countries often eat a calorie-rich diet and perform little physical activity. These habits are thought to be critical contributors to the rapidly rising incidence of obesity, a condition that affects hundreds of millions of people worldwide. High-calorie intake alters metabolic-sensing pathways in central nervous system neurons, and these changes have pathogenic roles in the development of obesity. This review aims to summarize our current knowledge about the neuronal populations (the central melanocortin system in particular) and transcriptional regulators, including STAT3 and FOXO1, that are involved in the maintenance of normal body weight. We describe the interactions between these transcriptional factors and their target genes, which encode the main appetite-regulating neuropeptides (agouti-related peptide and α-melanocyte-stimulating hormone). We discuss the transcriptional co-activator PGC-1-α and the supposed metabolic-sensor protein SIRT1, and their potential roles as targets for novel antiobesity medications.

Key Points

  • High-calorie intake alters metabolic-sensing pathways in central nervous system neurons; these alterations contribute to the development of obesity

  • A key center of the neural control of energy balance is the melanocortin system

  • Peripheral hormones, including insulin and leptin, function as key signals that regulate energy balance by direct effects on their cognate receptors on hypothalamic neurons

  • Hypothalamic receptors activate intracellular signaling molecules, including the transcription factors STAT3 and FOXO1, which translate hormonal signals into coordinated body-weight regulation

  • The transcriptional co-activator PGC-1-α and the supposed metabolic-sensor protein SIRT1 are potential molecular mediators of weight regulation, and might represent targets for novel antiobesity medications

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A proposed model of gene-expression regulation by SIRT1, PGC-1-α, and FOXO1 in central melanocortin neurons.

Similar content being viewed by others

References

  1. Morton GJ et al. (2006) Central nervous system control of food intake and body weight. Nature 443: 289–295

    Article  CAS  PubMed  Google Scholar 

  2. Cone RD (2006) Studies on the physiological functions of the melanocortin system. Endocr Rev 27: 736–749

    Article  CAS  PubMed  Google Scholar 

  3. Shutter JR et al. (1997) Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev 11: 593–602

    Article  CAS  PubMed  Google Scholar 

  4. Bronstein DM et al. (1992) Evidence that beta-endorphin is synthesized in cells in the nucleus tractus solitarius: detection of POMC mRNA. Brain Res 587: 269–275

    Article  CAS  PubMed  Google Scholar 

  5. Elias CF et al. (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23: 775–786

    Article  CAS  PubMed  Google Scholar 

  6. Balthasar N et al. (2004) Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42: 983–991

    Article  CAS  PubMed  Google Scholar 

  7. Seeley RJ and Schwartz MW (1999) Neuroendocrine regulation of food intake. Acta Paediatr. Suppl 88: 58–61

    Article  CAS  PubMed  Google Scholar 

  8. Bagnol D et al. (1999) Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J Neurosci 19: RC26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ollmann MM et al. (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278: 135–138

    Article  CAS  PubMed  Google Scholar 

  10. Cone RD et al. (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 51: 287–318

    CAS  PubMed  Google Scholar 

  11. Vaisse C et al. (1998) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20: 113–114

    Article  CAS  PubMed  Google Scholar 

  12. Huszar D et al. (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88: 131–141

    Article  CAS  PubMed  Google Scholar 

  13. Farooqi IS et al. (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 106: 271–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yeo GS et al. (1998) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20: 111–112

    Article  CAS  PubMed  Google Scholar 

  15. Yeo GS et al. (2003) Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum Mol Genet 12: 561–574

    Article  CAS  PubMed  Google Scholar 

  16. Balthasar N et al. (2005) Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123: 493–505

    Article  CAS  PubMed  Google Scholar 

  17. Fan W et al. (2005) Regulation of thermogenesis by the central melanocortin system. Peptides 26: 1800–1813

    Article  CAS  PubMed  Google Scholar 

  18. Elias CF et al. (1998) Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21: 1375–1385

    Article  CAS  PubMed  Google Scholar 

  19. van de Wall E et al. (2008) Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149: 1773–1785

    Article  CAS  PubMed  Google Scholar 

  20. Munzberg H et al. (2003) Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144: 2121–2131

    Article  CAS  PubMed  Google Scholar 

  21. Kitamura T et al. (2006) Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med 12: 534–540

    Article  CAS  PubMed  Google Scholar 

  22. Tang ED et al. (1999) Negative regulation of the forkhead transcription factor FKHR by Akt . J Biol Chem 274: 16741–16746

    Article  CAS  PubMed  Google Scholar 

  23. Aoki M et al. (2004) Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci USA 101: 13613–13617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim MS et al. (2006) Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nature Neurosci 9: 901–906

    Article  CAS  PubMed  Google Scholar 

  25. Puigserver P et al. (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829–839

    Article  CAS  PubMed  Google Scholar 

  26. Handschin C and Spiegelman BM (2008) The role of exercise and PGC1α in inflammation and chronic disease. Nature 454: 463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin J et al. (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418: 797–801

    Article  CAS  PubMed  Google Scholar 

  28. Lin J et al. (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119: 121–135

    Article  CAS  PubMed  Google Scholar 

  29. Arany Z et al. (2005) Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab 1: 259–271

    Article  CAS  PubMed  Google Scholar 

  30. Puigserver P et al. (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423: 550–555

    Article  CAS  PubMed  Google Scholar 

  31. Handschin C et al. (2005) Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α. Cell 122: 505–515

    Article  CAS  PubMed  Google Scholar 

  32. Yoon JC et al. (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413: 131–138

    Article  CAS  PubMed  Google Scholar 

  33. Knutti D et al. (2000) A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol 20: 2411–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Flück M and Hoppeler H (2003) Molecular basis of skeletal muscle plasticity—from gene to form and function. Rev. Physiol Biochem Pharmacol 146: 159–216

    Article  PubMed  Google Scholar 

  35. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37: 1974–1984

    Article  CAS  PubMed  Google Scholar 

  36. Russell AP et al. (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52: 2874–2881

    Article  CAS  PubMed  Google Scholar 

  37. Pilegaard H et al. (2003) Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 546: 851–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Calvo JA et al. (2008) Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104: 1304–1312

    Article  CAS  PubMed  Google Scholar 

  39. Handschin C et al. (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282: 30014–30021

    Article  CAS  PubMed  Google Scholar 

  40. Vianna CR et al. (2006) Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metab 4: 453–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leone TC et al. (2005) PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3: e101

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wallenius V et al. (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8: 75–79

    Article  CAS  PubMed  Google Scholar 

  43. Franckhauser S et al. (2008) Overexpression of Il6 leads to hyperinsulinaemia, liver inflammation and reduced body weight in mice. Diabetologia 51: 1306–1316

    Article  CAS  PubMed  Google Scholar 

  44. Handschin C et al. (2007) Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout-mice reveals skeletal muscle-pancreatic beta cell crosstalk. J Clin Invest 117: 3463–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Imai S et al. (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403: 795–800

    Article  CAS  PubMed  Google Scholar 

  46. Michan S and Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404: 1–13

    Article  CAS  PubMed  Google Scholar 

  47. Cheng HL et al. (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100: 10794–10799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo J et al. (2001) Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107: 137–148

    Article  CAS  PubMed  Google Scholar 

  49. Picard F et al. (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429: 771–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rodgers JT et al. (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434: 113–118

    Article  CAS  PubMed  Google Scholar 

  51. Gerhart-Hines Z et al. (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26: 1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakahata Y et al. (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134: 329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Asher G et al. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317–328

    Article  CAS  PubMed  Google Scholar 

  54. Qin W et al. (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281: 21745–21754

    Article  CAS  PubMed  Google Scholar 

  55. Kim D et al. (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 26: 3169–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Araki T et al. (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305: 1010–1013

    Article  CAS  PubMed  Google Scholar 

  57. Rodgers JT and Puigserver P (2007) Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA 104: 12861–12866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Prozorovski T et al. (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10: 385–394

    Article  CAS  PubMed  Google Scholar 

  59. Hisahara S et al. (2008) Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA 105: 15599–15604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McBurney MW et al. (2003) The mammalian SIR2α protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 23: 38–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen D Steele et al. (2005) Increase in activity during calorie restriction requires Sirt1. Science 310: 1641

    Article  PubMed  Google Scholar 

  62. Bordone L et al. (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4: e31

    Article  PubMed  Google Scholar 

  63. Li Y et al. (2008) SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8: 38–48

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ramadori G et al. (2008) Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci 28: 9989–9996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cota D et al. (2006) Hypothalamic mTOR signaling regulates food intake. Science 312: 927–930

    Article  CAS  PubMed  Google Scholar 

  66. Minokoshi Y et al. (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428: 569–574

    Article  CAS  PubMed  Google Scholar 

  67. Claret M et al. (2007) AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 117: 2325–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baur JA et al. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444: 337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lagouge M et al. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127: 1109–1122

    Article  CAS  PubMed  Google Scholar 

  70. Milne JC et al. (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450: 712–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center (R Coppari) and by National Institutes of Health grants DK53301, MH61583, DK081185 to JK Elmquist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Coppari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppari, R., Ramadori, G. & Elmquist, J. The role of transcriptional regulators in central control of appetite and body weight. Nat Rev Endocrinol 5, 160–166 (2009). https://doi.org/10.1038/ncpendmet1070

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet1070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing