Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pathogenesis of diabetic nephropathy

Abstract

Between 20% and 40% of patients with diabetes ultimately develop diabetic nephropathy, which in the US is the most common cause of end-stage renal disease requiring dialysis. Diabetic nephropathy has several distinct phases of development and multiple mechanisms contribute to the development of the disease and its outcomes. This Review provides a summary of the latest published data dealing with these mechanisms; it focuses not only on candidate genes associated with susceptibility to diabetic nephropathy but also on alterations in various cytokines and their interaction with products of advanced glycation and oxidant stress. Additionally, the interactions between fibrotic and hemodynamic cytokines, such as transforming growth factor β1 and angiotensin II, respectively, are discussed in the context of new information concerning nephropathy development. We touch on the expanding clinical data regarding markers of nephropathy, such as microalbuminuria, and put them into context; microalbuminuria reflects cardiovascular and not renal risk. If albuminuria levels continue to increase over time then nephropathy is present. Lastly, we look at advances being made to enable identification of genetically predisposed individuals.

Key Points

  • Microalbuminuria is not a predictor of nephropathy development in individuals with diabetes

  • Multiple mechanisms are operative in diabetes that are related to injury to the kidney and, in susceptible individuals, contribute to nephropathy development

  • Defects in nephrin and podocin are central to the development of macroalbuminuria and associated with nephropathy progression

  • Abnormally high concentrations of lipids contribute to β-cell injury and development of albuminuria

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Held PJ et al. (1991) The United States Renal Data System's 1991 annual data report: an introduction. Am J Kidney Dis 18: 1–16

    Article  CAS  Google Scholar 

  2. Makino H et al. (1996) Phenotypic modulation of the mesangium reflected by contractile proteins in diabetes. Diabetes 45: 488–495

    Article  CAS  Google Scholar 

  3. Mauer SM et al. (1984) Structural-functional relationships in diabetic nephropathy. J Clin Invest 74: 1143–1155

    Article  CAS  Google Scholar 

  4. Nielsen S et al. (1997) The clinical course of renal function in NIDDM patients with normo- and microalbuminuria. J Intern Med 241: 133–141

    Article  CAS  Google Scholar 

  5. Raile K et al. (2007) Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care 30: 2523–2528

    Article  Google Scholar 

  6. Remuzzi G et al. (2002) Clinical practice. Nephropathy in patients with type 2 diabetes. N Engl J Med 346: 1145–1151

    Article  Google Scholar 

  7. Steinke JM et al. (2005) The early natural history of nephropathy in type 1 diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 54: 2164–2171

    Article  CAS  Google Scholar 

  8. Ziyadeh FN (2004) Mediators of diabetic renal disease: the case for TGF-β as the major mediator. J Am Soc Nephrol 15 (Suppl 1): S55–S57

    Article  CAS  Google Scholar 

  9. Ichinose K et al. (2007) Recent advancement of understanding pathogenesis of type 1 diabetes and potential relevance to diabetic nephropathy. Am J Nephrol 27: 554–564

    Article  CAS  Google Scholar 

  10. Raptis AE and Viberti G (2001) Pathogenesis of diabetic nephropathy. Exp Clin Endocrinol Diabetes 109 (Suppl 2): S424–S437

    Article  CAS  Google Scholar 

  11. Singh DK et al. (2008) Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy. Nat Clin Pract Nephrol 4: 216–226

    Article  CAS  Google Scholar 

  12. Ziyadeh FN and Wolf G (2008) Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 4: 39–45

    Article  CAS  Google Scholar 

  13. Wolf G and Ziyadeh FN (1999) Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56: 393–405

    Article  CAS  Google Scholar 

  14. Wolf G and Ziyadeh FN (2007) Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol 106: 26–31

    Article  Google Scholar 

  15. Hilgers KF and Veelken R (2005) Type 2 diabetic nephropathy: never too early to treat? J Am Soc Nephrol 16: 574–575

    Article  Google Scholar 

  16. Nagai Y et al. (2005) Temporary angiotensin II blockade at the prediabetic stage attenuates the development of renal injury in type 2 diabetic rats. J Am Soc Nephrol 16: 703–711

    Article  CAS  Google Scholar 

  17. Sharma K et al. (1999) Captopril-induced reduction of serum levels of transforming growth factor-β1 correlates with long-term renoprotection in insulin-dependent diabetic patients. Am J Kidney Dis 34: 818–823

    Article  CAS  Google Scholar 

  18. Harris RD et al. (1991) Global glomerular sclerosis and glomerular arteriolar hyalinosis in insulin dependent diabetes. Kidney Int 40: 107–114

    Article  CAS  Google Scholar 

  19. Heilig CW et al. (1995) Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest 96: 1802–1814

    Article  CAS  Google Scholar 

  20. Mishra R et al. (2005) High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney Int 67: 82–93

    Article  CAS  Google Scholar 

  21. Lin CL et al. (2006) Wnt/β-catenin signaling modulates survival of high glucose-stressed mesangial cells. J Am Soc Nephrol 17: 2812–2820

    Article  CAS  Google Scholar 

  22. Chen ZJ et al. (2007) Expression of VEGF in kidney of diabetic rats [Chinese]. Sichuan Da Xue Xue Bao Yi Xue Ban 38: 633–636

    CAS  PubMed  Google Scholar 

  23. Wolf G et al. (2005) From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes 54: 1626–1634

    Article  CAS  Google Scholar 

  24. Mauer SM et al. (1983) The development of lesions in the glomerular basement membrane and mesangium after transplantation of normal kidneys to diabetic patients. Diabetes 32: 948–952

    Article  CAS  Google Scholar 

  25. Friedman EA (1999) Advanced glycation end-products in diabetic nephropathy. Nephrol Dial Transplant 14 (Suppl 3): S1–S9

    Article  Google Scholar 

  26. Porte D Jr and Schwartz (1996) MW Diabetes complications: why is glucose potentially toxic? Science 272: 699–700

    Article  CAS  Google Scholar 

  27. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813–820

    Article  CAS  Google Scholar 

  28. Makita Z et al. (1991) Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med 325: 836–842

    Article  CAS  Google Scholar 

  29. Singh AK et al. (1998) Effect of glycated proteins on the matrix of glomerular epithelial cells. J Am Soc Nephrol 9: 802–810

    CAS  PubMed  Google Scholar 

  30. Hogan M et al. (1992) Advanced glycosylation endproducts block the antiproliferative effect of nitric oxide Role in the vascular and renal complications of diabetes mellitus. J Clin Invest 90: 1110–1115

    Article  CAS  Google Scholar 

  31. Cooper ME (1998) Pathogenesis prevention and treatment of diabetic nephropathy. Lancet 352: 213–219

    Article  CAS  Google Scholar 

  32. Yamagishi S et al. (2007) Molecular mechanisms of diabetic nephropathy and its therapeutic intervention. Curr Drug Targets 8: 952–959

    Article  CAS  Google Scholar 

  33. Kunisaki M et al. (1994) Normalization of diacylglycerol-protein kinase C activation by vitamin E in aorta of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose levels. Diabetes 43: 1372–1377

    Article  CAS  Google Scholar 

  34. Haneda M et al. (1995) Abnormalities in protein kinase C and MAP kinase cascade in mesangial cells cultured under high glucose conditions. J Diabetes Complications 9: 246–248

    Article  CAS  Google Scholar 

  35. Tilton RG et al. (1989) Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes 38: 1258–1270

    Article  CAS  Google Scholar 

  36. Wilson DM and Luetscher JA (1990) Plasma prorenin activity and complications in children with insulin-dependent diabetes mellitus. N Engl J Med 323: 1101–1106

    Article  CAS  Google Scholar 

  37. Daneman D et al. (1994) Plasma prorenin as an early marker of nephropathy in diabetic (IDDM) adolescents. Kidney Int 46: 1154–1159

    Article  CAS  Google Scholar 

  38. Nguyen G (2006) Renin/prorenin receptors. Kidney Int 69: 1503–1506

    Article  CAS  Google Scholar 

  39. Ichihara A et al. (2006) Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol 17: 1950–1961

    Article  CAS  Google Scholar 

  40. Hohenstein B et al. (2006) Local VEGF activity but not VEGF expression is tightly regulated during diabetic nephropathy in man. Kidney Int 69: 1654–1661

    Article  CAS  Google Scholar 

  41. De Vriese AS et al. (2001) Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 12: 993–1000

    CAS  PubMed  Google Scholar 

  42. Sharma K and Ziyadeh FN (1995) Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 44: 1139–1146

    Article  CAS  Google Scholar 

  43. Kanesaki Y et al. (2005) Vascular endothelial growth factor gene expression is correlated with glomerular neovascularization in human diabetic nephropathy. Am J Kidney Dis 45: 288–294

    Article  CAS  Google Scholar 

  44. Satchell SC et al. (2004) Angiopoietin 1 and vascular endothelial growth factor modulate human glomerular endothelial cell barrier properties. J Am Soc Nephrol 15: 566–574

    Article  CAS  Google Scholar 

  45. Tsilibary EC (2003) Microvascular basement membranes in diabetes mellitus. J Pathol 200: 537–546

    Article  CAS  Google Scholar 

  46. Baelde HJ et al. (2007) Reduction of VEGF-A and CTGF expression in diabetic nephropathy is associated with podocyte loss. Kidney Int 71: 637–645

    Article  CAS  Google Scholar 

  47. Flyvbjerg A et al. (2002) Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes 51: 3090–3094

    Article  CAS  Google Scholar 

  48. Eremina V et al. (2006) Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival. J Am Soc Nephrol 17: 724–735

    Article  CAS  Google Scholar 

  49. Bortoloso E et al. (2004) Quantitave and qualitative changes in vascular endothelial growth factor gene expression in glomeruli of patients with type 2 diabetes. Eur J Endocrinol 150: 799–807

    Article  CAS  Google Scholar 

  50. Janssen B et al. (2005) Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 54: 2320–2327

    Article  CAS  Google Scholar 

  51. Isaka Y et al. (1997) Application of gene therapy to diabetic nephropathy. Kidney Int Suppl 60: S100–S103

    CAS  PubMed  Google Scholar 

  52. Benigni A et al. (2003) Add-on anti-TGF-beta antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol 14: 1816–1824

    Article  CAS  Google Scholar 

  53. Dai C et al. (2004) Intravenous administration of hepatocyte growth factor gene ameliorates diabetic nephropathy in mice. J Am Soc Nephrol 15: 2637–2647

    Article  CAS  Google Scholar 

  54. Navarro-Gonzalez JF and Mora-Fernandez C (2008) The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 19: 433–442

    Article  CAS  Google Scholar 

  55. Jones S et al. (2001) Regulation of renal proximal tubular epithelial cell hyaluronan generation: implications for diabetic nephropathy. Kidney Int 59: 1739–1749

    Article  CAS  Google Scholar 

  56. DiPetrillo K et al. (2003) Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am J Physiol Renal Physiol 284: F113–F121

    Article  CAS  Google Scholar 

  57. DiPetrillo K and Gesek FA (2004) Pentoxifylline ameliorates renal tumor necrosis factor expression, sodium retention, and renal hypertrophy in diabetic rats. Am J Nephrol 24: 352–359

    Article  CAS  Google Scholar 

  58. Imig JD (2006) Eicosanoids and renal vascular function in diseases. Clin Sci (Lond) 111: 21–34

    Article  CAS  Google Scholar 

  59. Pope JE et al. (1993) A meta-analysis of the effects of nonsteroidal anti-inflammatory drugs on blood pressure. Arch Intern Med 153: 477–484

    Article  CAS  Google Scholar 

  60. Hao CM and Breyer MD (2007) Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kidney Int 71: 1105–1115

    Article  CAS  Google Scholar 

  61. Hao CM and Breyer MD (2007) Roles of lipid mediators in kidney injury. Semin Nephrol 27: 338–351

    Article  CAS  Google Scholar 

  62. Nishikawa T et al. (2007) Impact of mitochondrial ROS production on diabetic vascular complications. Diabetes Res Clin Pract 77 (Suppl 1): S41–S45

    Article  CAS  Google Scholar 

  63. Kiritoshi S et al. (2003) Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells—potential role in diabetic nephropathy. Diabetes 52: 2570–2577

    Article  CAS  Google Scholar 

  64. Vasavada N and Agarwal R (2005) Role of oxidative stress in diabetic nephropathy. Adv Chronic Kidney Dis 12: 146–154

    Article  Google Scholar 

  65. Suzuki D et al. (1999) Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. J Am Soc Nephrol 10: 822–832

    CAS  PubMed  Google Scholar 

  66. Mundel P and Shankland SJ (2002) Podocyte biology and response to injury. J Am Soc Nephrol 13: 3005–3015

    Article  Google Scholar 

  67. Benigni A et al. (2004) Selective impairment of gene expression and assembly of nephrin in human diabetic nephropathy. Kidney Int 65: 2193–2200

    Article  CAS  Google Scholar 

  68. Langham RG et al. (2002) Proteinuria and the expression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin converting enzyme inhibition. Diabetologia 45: 1572–1576

    Article  CAS  Google Scholar 

  69. Doublier S et al. (2003) Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II. Diabetes 52: 1023–1030

    Article  CAS  Google Scholar 

  70. Adler S (2004) Diabetic nephropathy: Linking histology, cell biology, and genetics. Kidney Int 66: 2095–2106

    Article  Google Scholar 

  71. Trevisan R and Viberti G (1995) Genetic factors in the development of diabetic nephropathy. J Lab Clin Med 126: 342–349

    CAS  PubMed  Google Scholar 

  72. Pettitt DJ et al. (1990) Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 33: 438–443

    Article  CAS  Google Scholar 

  73. Imperatore G et al. (1998) Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima Diabetes Genes Group. Diabetes 47: 821–830

    Article  CAS  Google Scholar 

  74. Vardarli I et al. (2002) Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q223-23. Kidney Int 62: 2176–2183

    Article  CAS  Google Scholar 

  75. Iyengar SK et al. (2007) Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: the family investigation of nephropathy and diabetes (FIND). Diabetes 56: 1577–1585

    Article  CAS  Google Scholar 

  76. Movva S et al. (2007) Relationship of angiotensin-converting enzyme gene polymorphism with nephropathy associated with type 2 diabetes mellitus in Asian Indians. J Diabetes Complications 21: 237–241

    Article  Google Scholar 

  77. Jeffers BW et al. (1997) Angiotensin-converting enzyme gene polymorphism in non-insulin dependent diabetes mellitus and its relationship with diabetic nephropathy. Kidney Int 52: 473–477

    Article  CAS  Google Scholar 

  78. Kunz R et al. (1998) Association between the angiotensin-converting enzyme-insertion/deletion polymorphism and diabetic nephropathy: a methodologic appraisal and systematic review. J Am Soc Nephrol 9: 1653–1663

    CAS  PubMed  Google Scholar 

  79. Boright AP et al. (2005) Genetic variation at the ACE gene is associated with persistent microalbuminuria and severe nephropathy in type 1 diabetes: the DCCT/EDIC Genetics Study. Diabetes 54: 1238–1244

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Charles P Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George L Bakris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dronavalli, S., Duka, I. & Bakris, G. The pathogenesis of diabetic nephropathy. Nat Rev Endocrinol 4, 444–452 (2008). https://doi.org/10.1038/ncpendmet0894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet0894

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing