Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prevention of type 1 diabetes: the time has come

Abstract

Improved understanding of the pathogenesis of type 1 diabetes mellitus has completely changed our view of this disease in the past 25 years—from an acute, fulminant disease, to a chronic, autoimmune process. Information on genetic and serologic markers has increased our ability to identify individuals at risk. Prospectively gathered data indicate that, with a combination of immunologic and metabolic studies, children with a 6-year risk of disease higher than 90% can be identified due to an ongoing immune process. They differ from children with overt disease only in the time it will take for glucose levels to rise above a diagnostic threshold. Therapies to change the progression of β-cell loss have been tested in patients with newly diagnosed type 1 diabetes. With improved predictive capabilities and agents that can have longer-lasting effects than those tested more than 10 years ago, new prevention studies are underway. These studies are large and costly but the risks posed by such interventions compare favorably with those of developing hyperglycemia and of future complications portended by the diagnosis of diabetes. In this Review we discuss risk-stratification techniques and how they are applied, other diagnostic criteria, and outcomes from diabetes-prevention trials.

Key Points

  • Screening of relatives with type 1 diabetes can identify individuals with an extraordinarily high risk of developing overt type 1 diabetes mellitus within 5–6 years

  • Diagnostic criteria for diabetes are not associated with the disease process but rather with glycemic levels associated with the development of complications

  • Prevention trials will target individuals with greater functional β-cell mass, who have not yet demonstrated overt hyperglycemia but who are at high risk of disease development

  • Future prevention trials will include the use of therapies that are antigen specific or antigen nonspecific, or that are used in combination

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Life table analysis of the development of diabetes in autoantibody-positive individuals enrolled in the Diabetes Prevention Trial-Type 1 who had impaired or indeterminate glucose tolerance.

Similar content being viewed by others

References

  1. Atkinson MA (2005) ADA Outstanding Scientific Achievement Lecture 2004. Thirty years of investigating the autoimmune basis for type 1 diabetes: why can't we prevent or reverse this disease? Diabetes 54: 1253–1263

    Article  CAS  Google Scholar 

  2. Eisenbarth GS (1986) Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314: 1360–1368

    Article  CAS  Google Scholar 

  3. Palmer JP et al. (2004) C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve beta-cell function: report of an ADA workshop, 21-22 October 2001. Diabetes 53: 250–264

    Article  CAS  Google Scholar 

  4. Steffes MW et al. (2003) beta-Cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care 26: 832–836

    Article  Google Scholar 

  5. Bougneres PF et al. (1988) Factors associated with early remission of type I diabetes in children treated with cyclosporine. N Engl J Med 318: 663–670

    Article  CAS  Google Scholar 

  6. Silverstein J et al. (1988) Immunosuppression with azathioprine and prednisone in recent-onset insulin-dependent diabetes mellitus. N Engl J Med 319: 599–604

    Article  CAS  Google Scholar 

  7. Keymeulen B et al. (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352: 2598–2608

    Article  CAS  Google Scholar 

  8. Herold KC et al. (2002) Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 346: 1692–1698

    Article  CAS  Google Scholar 

  9. Herold KC et al. (2005) A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54: 1763–1769

    Article  CAS  Google Scholar 

  10. Hagopian WA et al. (1995) Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest 95: 1505–1511

    Article  CAS  Google Scholar 

  11. Eisenbarth GS et al. (1998) Dual-parameter model for prediction of type I diabetes mellitus. Proc Assoc Am Physicians 110: 126–135

    CAS  PubMed  Google Scholar 

  12. Verge CF et al. (1996) Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 45: 926–933

    Article  CAS  Google Scholar 

  13. Bingley PJ (1996) Interactions of age, islet cell antibodies, insulin autoantibodies, and first-phase insulin response in predicting risk of progression to IDDM in ICA+ relatives: the ICARUS data set. Islet Cell Antibody Register Users Study. Diabetes 45: 1720–1728

    Article  CAS  Google Scholar 

  14. Barker JM et al. (2004) Prediction of autoantibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY). J Clin Endocrinol Metab 89: 3896–3902

    Article  CAS  Google Scholar 

  15. Merriman TR and Todd JA (1995) Genetics of autoimmune disease. Curr Opin Immunol 7: 786–792

    Article  CAS  Google Scholar 

  16. Todd JA et al. (1987) HLA-DQβ gene contributes to susceptibility and resistance to insulin dependent diabetes mellitus. Nature 329: 599–604

    Article  CAS  Google Scholar 

  17. Atkinson MA and Eisenbarth GS (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358: 221–229

    Article  CAS  Google Scholar 

  18. Todd JA et al. (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39: 857–864

    Article  CAS  Google Scholar 

  19. Rewers M et al. (1996) Beta-cell autoantibodies in infants and toddlers without IDDM relatives: diabetes autoimmunity study in the young (DAISY). J Autoimmun 9: 405–410

    Article  CAS  Google Scholar 

  20. Rewers M et al. (1996) Newborn screening for HLA markers associated with IDDM: diabetes autoimmunity study in the young (DAISY). Diabetologia 39: 807–812

    Article  CAS  Google Scholar 

  21. Lambert AP et al. (2004) Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class II genotype: a population-based study in the United Kingdom. J Clin Endocrinol Metab 89: 4037–4043

    Article  CAS  Google Scholar 

  22. Bell GI et al. (1984) A polymorphic locus near the human insulin gene is associated with insulin dependent diabetes mellitus. Diabetes 33: 2176–2183

    Google Scholar 

  23. Bottini N et al. (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type 1 diabetes. Nature 36: 337–338

    CAS  Google Scholar 

  24. Nejentsev S et al. (2007) Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450: 887–892

    Article  CAS  Google Scholar 

  25. Yu L et al. (1996) Anti-islet autoantibodies usually develop sequentially rather than simultaneously. J Clin Endocrinol Metab 81: 4264–4267

    CAS  PubMed  Google Scholar 

  26. Yu L et al. (2001) Expression of GAD65 and islet cell antibody (ICA512) autoantibodies among cytoplasmic ICA+ relatives is associated with eligibility for the Diabetes Prevention Trial-Type 1. Diabetes 50: 1735–1740

    Article  CAS  Google Scholar 

  27. Irvine WJ et al. (1976) Pancreatic islet-cell antibody as a marker for asymptomatic and latent diabetes and prediabetes. Lancet 2: 1097–1102

    Article  CAS  Google Scholar 

  28. Landin-Olsson M (1990) Precision of the islet-cell antibody assay depends on the pancreas. J Clin Lab Anal 4: 289–294

    Article  CAS  Google Scholar 

  29. Wenzlau JM et al. (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 104: 17040–17045

    Article  CAS  Google Scholar 

  30. Krischer JP et al. (2003) Screening strategies for the identification of multiple antibody-positive relatives of individuals with type 1 diabetes. J Clin Endocrinol Metab 88: 103–108

    Article  CAS  Google Scholar 

  31. Achenbach P et al. (2006) Type 1 diabetes risk assessment: improvement by follow-up measurements in young islet autoantibody-positive relatives. Diabetologia 49: 2969–2976

    Article  CAS  Google Scholar 

  32. Bingley PJ et al. (1997) Prediction of IDDM in the general population: strategies based on combinations of autoantibody markers. Diabetes 46: 1701–1710

    Article  CAS  Google Scholar 

  33. Sosenko JM et al. (2006) Patterns of metabolic progression to type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 29: 643–649

    Article  Google Scholar 

  34. Tsai EB et al. (2006) The rise and fall of insulin secretion in type 1 diabetes mellitus. Diabetologia 49: 261–270

    Article  CAS  Google Scholar 

  35. Sosenko JM et al. (2007) Increasing the accuracy of oral glucose tolerance testing and extending its application to individuals with normal glucose tolerance for the prediction of type 1 diabetes: the Diabetes Prevention Trial-Type 1. Diabetes Care 30: 38–42

    Article  CAS  Google Scholar 

  36. Xu P et al. (2007) Role of insulin resistance in predicting progression to type 1 diabetes. Diabetes Care 30: 2314–2320

    Article  Google Scholar 

  37. Sosenko JM et al. (2007) A risk score for type 1 diabetes derived from autoantibody positive participants in the diabetes prevention trial-type 1. Diabetes Care 31: 528–533

    Article  Google Scholar 

  38. Stiller CR et al. (1984) Effects of cyclosporine immunosuppression in insulin-dependent diabetes mellitus of recent onset. Science 223: 1362–1367

    Article  CAS  Google Scholar 

  39. Stiller CR et al. (1987) Effects of cyclosporine in recent-onset juvenile type 1 diabetes: impact of age and duration of disease. J Pediatr 111: 1069–1072

    Article  CAS  Google Scholar 

  40. Carel JC et al. (1996) Cyclosporine delays but does not prevent clinical onset in glucose intolerant pre-type 1 diabetic children. J Autoimmun 9: 739–745

    Article  CAS  Google Scholar 

  41. Parving HH et al. (1999) Cyclosporine nephrotoxicity in type 1 diabetic patients. A 7-year follow-up study. Diabetes Care 22: 478–483

    Article  CAS  Google Scholar 

  42. Gale EA et al. (2004) European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomized controlled trial of intervention before the onset of type 1 diabetes. Lancet 363: 925–931

    Article  CAS  Google Scholar 

  43. Gale EA (2003) Intervening before the onset of type 1 diabetes: baseline data from the European Nicotinamide Diabetes Intervention Trial (ENDIT). Diabetologia 46: 339–346

    Article  Google Scholar 

  44. Diabetes Prevention Trial: Type 1 Diabetes Study Group (2002) Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 346: 1685–1691

  45. Skyler JS et al. (2005) Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial—Type 1. Diabetes Care 28: 1068–1076

    Article  CAS  Google Scholar 

  46. Zhang ZJ et al. (1991) Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci U S A 88: 10252–10256

    Article  CAS  Google Scholar 

  47. Yamada K et al. (1982) Preventive and therapeutic effects of large-dose nicotinamide injections on diabetes associated with insulitis. An observation in nonobese diabetic (NOD) mice. Diabetes 31: 749–753

    Article  CAS  Google Scholar 

  48. Pozzilli P et al. (1996) Meta-analysis of nicotinamide treatment in patients with recent-onset IDDM. The Nicotinamide Trialists. Diabetes Care 19: 1357–1363

    Article  CAS  Google Scholar 

  49. Keller RJ et al. (1993) Insulin prophylaxis in individuals at high risk of type I diabetes. Lancet 341: 927–928

    Article  CAS  Google Scholar 

  50. Pociot F (1993) Nicotinamide-biological actions and therapeutic potential in diabetes prevention. Diabetologia 36: 574–576

    Article  CAS  Google Scholar 

  51. National Diabetes Data Group (1979) Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28: 1039–1057

  52. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 26: 3160–3167

  53. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2007) Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 30 (Suppl): S42–S47

  54. Sherry NA et al. (2006) Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes 55: 3238–3245

    Article  CAS  Google Scholar 

  55. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977–986

  56. Lehmann PV et al. (1992) Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358: 155–157

    Article  CAS  Google Scholar 

  57. Rish R et al. (1999) Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J Immunol 163: 1178–1187

    Google Scholar 

  58. Agardh C et al. (2005) Clinical evidence for the safety of GAD65 immunomodulation in adult onset autoimmune diabetes. J Diabetes Complications 19: 238–246

    Article  Google Scholar 

  59. Hu CY et al. (2007) Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin Invest 117: 3857–3867

    Article  CAS  Google Scholar 

  60. Bresson D et al. (2006) Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J Clin Invest 116: 1371–1381

    Article  CAS  Google Scholar 

  61. Nir T et al. (2007) Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 117: 2553–2561

    Article  CAS  Google Scholar 

  62. Dor Y et al. (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429: 41–46

    Article  CAS  Google Scholar 

  63. Sherry N et al. (2007) Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 mAb by enhancing recovery of β cells. Endocrinology 148: 5136–5144

    Article  CAS  Google Scholar 

  64. Hadjiyanni I et al. (2008) Exendin-4 modulates diabetes onset in non obese diabetic mice. Endocrinology 149: 1338–1349

    Article  CAS  Google Scholar 

  65. Fourlanos S et al. (2004) Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia 47: 1661–1667

    Article  CAS  Google Scholar 

  66. Bingley PJ and Gale EA (2006) Progression to type 1 diabetes in islet cell antibody-positive relatives in the European Nicotinamide Diabetes Intervention Trial: the role of additional immune, genetic and metabolic markers of risk. Diabetologia 49: 881–890

    Article  CAS  Google Scholar 

  67. Achenbach P et al. (2004) Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes 53: 384–392

    Article  CAS  Google Scholar 

  68. Dahlquist G and Gothefors L (1995) The cumulative incidence of childhood diabetes mellitus in Sweden unaffected by BCG-vaccination. Diabetologia 38: 873–874

    Article  CAS  Google Scholar 

  69. Parent ME et al. (1997) Bacille Calmette-Guerin vaccination and incidence of IDDM in Montreal, Canada. Diabetes Care 20: 767–772

    Article  CAS  Google Scholar 

  70. Huppmann M et al. (2005) Neonatal Bacille Calmette-Guerin vaccination and type 1 diabetes. Diabetes Care 28: 1204–1206

    Article  Google Scholar 

  71. Bohmer KP et al. (1994) Linear loss of insulin secretory capacity during the last six months preceding IDDM. No effect of antiedematous therapy with ketotifen. Diabetes Care 17: 138–141

    Article  CAS  Google Scholar 

  72. Hummel M et al. (2002) Elimination of dietary gluten does not reduce titers of type 1 diabetes-associated autoantibodies in high-risk subjects. Diabetes Care 25: 1111–1116

    Article  CAS  Google Scholar 

  73. Lampeter EF et al. (1998) The Deutsche Nicotinamide Intervention Study: an attempt to prevent type 1 diabetes. DENIS Group. Diabetes 47: 980–984

    Article  CAS  Google Scholar 

  74. Kupila A et al. (2003) Intranasally administered insulin intended for prevention of type 1 diabetes—a safety study in healthy adults. Diabetes Metab Res Rev 19: 415–420

    Article  CAS  Google Scholar 

  75. TRIGR Study Group (2007) Study design of the Trial to Reduce IDDM in the Genetically at Risk (TRIGR). Pediatr Diabetes 8: 117–137

Download references

Acknowledgements

K Herold was awarded grants from the NIH, the Juvenile Diabetes Research Foundation, and the Brehm Foundation to support work related to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevan C Herold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherr, J., Sosenko, J., Skyler, J. et al. Prevention of type 1 diabetes: the time has come. Nat Rev Endocrinol 4, 334–343 (2008). https://doi.org/10.1038/ncpendmet0832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet0832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing