Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: using genetically altered mice to study concepts of type 2 diabetes

Abstract

A wide range of genetically engineered murine models of type 2 diabetes have been created to try to understand the site of the primary defect in insulin action, and the relationship between insulin resistance and impaired β-cell function in diabetes. Genetic disruption of various aspects known to be important in diabetes has examined specific facets, including glucose sensing, transcription factors for the insulin gene, the insulin gene itself, insulin and insulin-like growth factor receptors, downstream signaling components and some mutations that increase insulin sensitivity. This article focuses on models that have given insight into insulin resistance and impaired insulin production, especially models that examine molecules involved in the signaling pathway downstream of insulin binding its receptor. These models recapitulate many features of human type 2 diabetes and, although they have emphasized the complexity of this disease, they offer numerous opportunities to characterize particular aspects and eventually fit them together to help delineate the human disease.

Key Points

  • The pathophysiology of type 2 diabetes mellitus includes β-cell dysfunction and insulin resistance

  • Mouse models that have specific gene-deletions are useful for studying disease processes such as diabetes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Insulin receptor signaling cascades.

Similar content being viewed by others

References

  1. Accili D (2004) Lilly lecture 2003: the struggle for mastery in insulin action: from triumvirate to republic. Diabetes 53: 1633–1642

    Article  CAS  PubMed  Google Scholar 

  2. Permutt MA and Hattersley AT (2000) Searching for type 2 diabetes genes in the post-genome era. Trends Endocrinol Metab 11: 383–393

    Article  CAS  PubMed  Google Scholar 

  3. Nandi A et al. (2004) Mouse models of insulin resistance. Physiol Rev 84: 623–647

    Article  CAS  PubMed  Google Scholar 

  4. Accili D et al. (1996) Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet 12: 106–109

    Article  CAS  PubMed  Google Scholar 

  5. Michael MD et al. (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6: 87–97

    Article  CAS  PubMed  Google Scholar 

  6. Bluher M et al. (2002) Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 3: 25–38

    Article  CAS  PubMed  Google Scholar 

  7. Bluher M et al. (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299: 572–574

    Article  PubMed  Google Scholar 

  8. Guerra C et al. (2001) Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest 108: 1205–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bruning JC et al. (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2: 559–569

    Article  CAS  PubMed  Google Scholar 

  10. Bruning JC et al. (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289: 2122–2125

    Article  CAS  PubMed  Google Scholar 

  11. Kulkarni RN et al. (1999) Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96: 329–339

    Article  CAS  PubMed  Google Scholar 

  12. Kulkarni RN et al. (2002) β-Cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter β-cell mass. Nat Genet 31: 111–115

    Article  CAS  PubMed  Google Scholar 

  13. Xuan S et al. (2002) Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor. J Clin Invest 110: 1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Okada T et al. (2007) Insulin receptors in β-cells are critical for islet compensatory growth response to insulin resistance. Proc Natl Acad Sci U S A 104: 8977–8982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Laustsen PG et al. (2007) Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol Cell Biol 27: 1649–1664

    Article  CAS  PubMed  Google Scholar 

  16. Accili D (2001) A kinase in the life of the β cell. J Clin Invest 108: 1575–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fernandez AM et al. (2001) Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 15: 1926–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zisman A et al. (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 6: 924–928

    Article  CAS  PubMed  Google Scholar 

  19. Tamemoto H et al. (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372: 182–186

    Article  CAS  PubMed  Google Scholar 

  20. Bruning JC et al. (1997) Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88: 561–572

    Article  CAS  PubMed  Google Scholar 

  21. Kubota N et al. (2000) Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory β-cell hyperplasia. Diabetes 49: 1880–1889

    Article  CAS  PubMed  Google Scholar 

  22. Dong X et al. (2006) Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J Clin Invest 116: 101–114

    Article  CAS  PubMed  Google Scholar 

  23. Taguchi A et al. (2007) Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317: 369–372

    Article  CAS  PubMed  Google Scholar 

  24. Barbieri M et al. (2003) Glucose regulation and oxidative stress in healthy centenarians. Exp Gerontol 38: 137–143

    Article  CAS  PubMed  Google Scholar 

  25. Miller RA et al. (2002) Big mice die young: early life body weight predicts longevity in genetically heterogeneous mice. Aging Cell 1: 22–29

    Article  CAS  PubMed  Google Scholar 

  26. Bonkowski MS et al. (2006) Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci U S A 103: 7901–7905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu SC et al. (1999) Insulin receptor substrate 3 is not essential for growth or glucose homeostasis. J Biol Chem 274: 18093–18099

    Article  CAS  PubMed  Google Scholar 

  28. Fantin VR et al. (2000) Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am J Physiol Endocrinol Metab 278: E127–E133

    Article  CAS  PubMed  Google Scholar 

  29. Cho H et al. (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB β). Science 292: 1728–1731

    Article  CAS  PubMed  Google Scholar 

  30. Garofalo RS et al. (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB β. J Clin Invest 112: 197–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Katz EB et al. (1995) Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377: 151–155

    Article  CAS  PubMed  Google Scholar 

  32. Abel ED et al. (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409: 729–733

    Article  CAS  PubMed  Google Scholar 

  33. Crosson SM et al. (2003) PTG gene deletion causes impaired glycogen synthesis and developmental insulin resistance. J Clin Invest 111: 1423–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poy MN et al. (2002) CEACAM1 regulates insulin clearance in liver. Nat Genet 30: 270–276

    Article  PubMed  Google Scholar 

  35. Moitra J et al. (1998) Life without white fat: a transgenic mouse. Genes Dev 12: 3168–3181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimomura I et al. (1998) Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev 12: 3182–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duvillie B et al. (1997) Phenotypic alterations in insulin-deficient mutant mice. Proc Natl Acad Sci U S A 94: 5137–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hong EG et al. (2007) Nonobese, insulin-deficient Ins2Akita mice develop type 2 diabetes phenotypes including insulin resistance and cardiac remodeling. Am J Physiol Endocrinol Metab 293: E1687–E1696

    Article  CAS  PubMed  Google Scholar 

  39. Stoy J et al. (2007) Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A 104: 15040–15044

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wellen KE and Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115: 1111–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harding HP and Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51 (Suppl 3): S455–S461

    Article  CAS  PubMed  Google Scholar 

  42. Zhang P et al. (2002) The PERK eukaryotic initiation factor 2 α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22: 3864–3874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harding HP et al. (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7: 1153–1163

    Article  CAS  PubMed  Google Scholar 

  44. Froguel P and Velho G (1999) Molecular genetics of maturity-onset diabetes of the young. Trends Endocrinol Metab 10: 142–146

    Article  CAS  PubMed  Google Scholar 

  45. Grupe A et al. (1995) Transgenic knockouts reveal a critical requirement for pancreatic β cell glucokinase in maintaining glucose homeostasis. Cell 83: 69–78

    Article  CAS  PubMed  Google Scholar 

  46. Postic C et al. (1999) Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274: 305–315

    Article  CAS  PubMed  Google Scholar 

  47. Stoffers DA et al. (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15: 106–110

    Article  CAS  PubMed  Google Scholar 

  48. Stoffers DA et al. (1997) Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 17: 138–139

    Article  CAS  PubMed  Google Scholar 

  49. Hani EH et al. (1999) Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J Clin Invest 104: R41–R48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Macfarlane WM et al. (1999) Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J Clin Invest 104: R33–R39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ahlgren U et al. (1998) ß-Cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev 12: 1763–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johnson JD et al. (2003) Increased islet apoptosis in Pdx1+/− mice. J Clin Invest 111: 1147–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Butler AE et al. (2003) ß-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52: 102–110

    Article  CAS  PubMed  Google Scholar 

  54. Naya FJ et al. (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 11: 2323–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamagata K et al. (1996) Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature 384: 458–460

    Article  CAS  PubMed  Google Scholar 

  56. Chen WS et al. (1994) Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev 8: 2466–2477

    Article  CAS  PubMed  Google Scholar 

  57. Li J et al. (2000) Mammalian hepatocyte differentiation requires the transcription factor HNF-4α. Genes Dev 14: 464–474

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gupta RK et al. (2005) The MODY1 gene HNF-4α regulates selected genes involved in insulin secretion. J Clin Invest 115: 1006–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yamagata K et al. (1996) Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature 384: 455–458

    Article  CAS  PubMed  Google Scholar 

  60. Pontoglio M et al. (1998) Defective insulin secretion in hepatocyte nuclear factor 1α-deficient mice. J Clin Invest 101: 2215–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang L et al. (2004) Selective deletion of the Hnf1β (MODY5) gene in β-cells leads to altered gene expression and defective insulin release. Endocrinology 145: 3941–3949

    Article  CAS  PubMed  Google Scholar 

  62. Nakae J et al. (2002) Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet 32: 245–253

    Article  CAS  PubMed  Google Scholar 

  63. Matsumoto M et al. (2007) Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor foxo1 in liver. Cell Metab 6: 208–216

    Article  CAS  PubMed  Google Scholar 

  64. Kitamura T et al. (2002) The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. J Clin Invest 110: 1839–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Elchebly M et al. (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283: 1544–1548

    Article  CAS  PubMed  Google Scholar 

  66. Terauchi Y et al. (1999) Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 α subunit of phosphoinositide 3-kinase. Nat Genet 21: 230–235

    Article  CAS  PubMed  Google Scholar 

  67. Clement S et al. (2001) The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409: 92–97

    Article  CAS  PubMed  Google Scholar 

  68. Hirosumi J et al. (2002) A central role for JNK in obesity and insulin resistance. Nature 420: 333–336

    Article  CAS  PubMed  Google Scholar 

  69. Yuan M et al. (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293: 1673–1677

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek LeRoith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeRoith, D., Accili, D. Mechanisms of Disease: using genetically altered mice to study concepts of type 2 diabetes. Nat Rev Endocrinol 4, 164–172 (2008). https://doi.org/10.1038/ncpendmet0729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet0729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing