Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug Insight: eplerenone, a mineralocorticoid-receptor antagonist

Abstract

Increasing recognition of the role of aldosterone in cardiovascular disease has been supported by a significant body of evidence from animal models. This evidence has been translated into clinical practice, and large-scale, randomized, placebo-controlled trials have confirmed the beneficial effects of mineralocorticoid blockade in patients with heart failure. As a consequence, there has been a resurgence in the use of mineralocorticoid-receptor antagonists in clinical practice that has prompted the search for a potent and specific antagonist without the sexual side effects of spironolactone. Eplerenone, a mineralocorticoid-receptor antagonist with minimal binding to the progesterone and androgen receptors, is now licensed for treatment of heart failure in Europe and heart failure and hypertension in the US; it has also been proposed as a treatment for a variety of cardiovascular conditions. This article reviews the current concepts of the actions of aldosterone at a cellular level. Recent findings regarding its role as a cardiovascular hormone, both in animal models and human studies, are discussed. We also describe the development of mineralocorticoid-receptor blockers following the isolation of aldosterone and discuss the subsequent search for a specific mineralocorticoid antagonist. In addition we detail the effects of eplerenone in a number of clinical situations and outline its potential future applications.

Key Points

  • There is increasing evidence that aldosterone has a key role in cardiovascular pathology

  • Experimental data suggest that mineralocorticoid blockade is beneficial in models of hypertension, nephropathy and heart failure

  • Mineralocorticoid blockade has proved a valuable therapeutic option in clinical studies of heart failure and after myocardial infarction

  • Few data exist regarding outcomes in large cohorts of patients in other cardiovascular conditions (e.g. nephropathy, hypertension) and these are required, as well as confirmatory studies in heart failure, to establish the role of eplerenone in clinical practice

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of mineralocorticoid-receptor antagonists.

Similar content being viewed by others

References

  1. Funder JW (1995) Mineralocorticoid receptors and hypertension. J Steroid Biochem Mol Biol 53: 53–55

    Article  CAS  Google Scholar 

  2. Losel R et al. (2004) A quick glance at rapid aldosterone action. Mol Cell Endocrinol 217: 137–141

    Article  CAS  Google Scholar 

  3. MacKenzie SM et al. (2002) Local renin–angiotensin systems and their interactions with extra-adrenal corticosteroid production. J Renin Angiotensin Aldosterone Syst 3: 214–221

    Article  CAS  Google Scholar 

  4. Connell JM and Davies E (2002) The new biology of aldosterone. J Endocrinol 186: 1–20

    Article  Google Scholar 

  5. Penfornis P et al. (2000) The mineralocorticoid receptor mediates aldosterone-induced differentiation of T37i cells into brown adipocytes. Am J Physiol Endocrinol Metab 279: E386–E394

    Article  CAS  Google Scholar 

  6. Gomez-Sanchez EP (2004) Brain mineralocorticoid receptors: orchestrators of hypertension and end-organ disease. Curr Opin Nephrol Hypertens 13: 191–196

    Article  CAS  Google Scholar 

  7. Rocha R (2002) Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol 283: H1802–H1810

    Article  CAS  Google Scholar 

  8. Pitt B et al. (2003) Mineralocorticoid receptor blockade: new insights into the mechanism of action in patients with cardiovascular disease. J Renin Angiotensin Aldosterone Syst 4: 164–168

    Article  CAS  Google Scholar 

  9. Young MJ et al. (2003) Early inflammatory responses in experimental cardiac hypertrophy and fibrosis: effects of 11 β-hydroxysteroid dehydrogenase inactivation. Endocrinology 144: 1121–1125

    Article  CAS  Google Scholar 

  10. Funder JW (2005) RALES, EPHESUS and redox. J Steroid Biochem Mol Biol 93: 121–125

    Article  CAS  Google Scholar 

  11. Lim PO et al. (1999) Potentially high prevalence of primary aldosteronism in a primary-care population. Lancet 353: 40

    Article  CAS  Google Scholar 

  12. Calhoun DA et al. (2002) Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 40: 892–896

    Article  CAS  Google Scholar 

  13. Rossi GP et al. (2006) A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol 48: 2293–2300

    Article  CAS  Google Scholar 

  14. Rossi GP et al. (1996) Changes in left ventricular anatomy and function in hypertension and primary aldosteronism. Hypertension 27: 1039–1045

    Article  CAS  Google Scholar 

  15. Milliez P et al. (2005) Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 45: 1243–1248

    Article  CAS  Google Scholar 

  16. Vasan RS et al. (2004) Serum aldosterone and the incidence of hypertension in nonhypertensive persons. N Engl J Med 351: 33–41

    Article  CAS  Google Scholar 

  17. Newton-Cheh C et al. (2007) Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample. Hypertension 49: 846–856

    Article  CAS  Google Scholar 

  18. Beygui F et al. (2006) High plasma aldosterone levels on admission are associated with death in patients presenting with acute ST-elevation myocardial infarction. Circulation 114: 2604–2610

    Article  CAS  Google Scholar 

  19. Vantrimpont P et al. (1998) Two-year time course and significance of neurohumoral activation in the Survival and Ventricular Enlargement (SAVE) Study. Eur Heart J 19: 1552–1563

    Article  CAS  Google Scholar 

  20. Swedberg K et al. (1990) Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group. Circulation 82: 1730–1736

    Article  CAS  Google Scholar 

  21. Guder G et al. (2007) Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. Circulation 115: 1754–1761

    Article  Google Scholar 

  22. Brilla CG et al. (1990) Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 67: 1355–1364

    Article  CAS  Google Scholar 

  23. Rocha R et al. (1998) Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 31: 451–458

    Article  CAS  Google Scholar 

  24. Rocha R et al. (2000) Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology 141: 3871–3878

    Article  CAS  Google Scholar 

  25. Blasi ER et al. (2003) Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int 63: 1791–1800

    Article  CAS  Google Scholar 

  26. McKelvie RS et al. (1999) Comparison of candesartan, enalapril, and their combination in congestive heart failure: Randomized Evaluation of Strategies for Left Ventricular Dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 100: 1056–1064

    Article  CAS  Google Scholar 

  27. Lee AF et al. (1999) Neurohormonal reactivation in heart failure patients on chronic ACE inhibitor therapy: a longitudinal study. Eur J Heart Fail 1: 401–406

    Article  CAS  Google Scholar 

  28. Pitt B et al. (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341: 709–717

    Article  CAS  Google Scholar 

  29. Tait SAS et al. (2004) The discovery, isolation and identification of aldosterone: reflections on emerging regulation and function. Mol Cell Endocrinol 217: 1–21

    Article  CAS  Google Scholar 

  30. Jeunemaitre X et al. (1987) Efficacy and tolerance of spironolactone in essential hypertension. Am J Cardiol 60: 820–825

    Article  CAS  Google Scholar 

  31. Chapman N et al. (2007) Effect of spironolactone on blood pressure in subjects with resistant hypertension. Hypertension 49: 839–845

    Article  CAS  Google Scholar 

  32. Nishizaka MK et al. (2003) Efficacy of low-dose spironolactone in subjects with resistant hypertension. Am J Hypertens 16: 925–930

    Article  CAS  Google Scholar 

  33. Lane DA et al. (2007) Low-dose spironolactone in the management of resistant hypertension: a surveillance study. J Hypertens 25: 891–894

    Article  CAS  Google Scholar 

  34. McInnes GT et al. (1982) Relative potency and structure activity relationships of aldosterone antagonists in healthy man: correlation with animal experience. Br J Clin Pharmacol 13: 331–339

    Article  CAS  Google Scholar 

  35. De Gasparo M et al. (1987) Three new epoxy-spirolactone derivatives: characterization in vivo and in vitro . J Pharmacol Exp Ther 240: 650–656

    CAS  PubMed  Google Scholar 

  36. De Gasparo M et al. (1989) Antialdosterones: incidence and prevention of sexual side effects. J Steroid Biochem 32: 223–227

    Article  CAS  Google Scholar 

  37. Lacolley P et al. (2002) Increased carotid wall elastic modulus and fibronectin in aldosterone-salt-treated rats: effects of eplerenone. Circulation 106: 2848–2853

    Article  CAS  Google Scholar 

  38. Rajagopalan S et al. (2002) Mineralocorticoid receptor antagonism in experimental atherosclerosis. Circulation 105: 2212–2216

    Article  CAS  Google Scholar 

  39. Suzuki J et al. (2006) Eplerenone with valsartan effectively reduces atherosclerotic lesion by attenuation of oxidative stress and inflammation. Arterioscler Thromb Vasc Biol 26: 917–921

    Article  CAS  Google Scholar 

  40. Takai S et al. (2005) Eplerenone inhibits atherosclerosis in nonhuman primates. Hypertension 46: 1135–1139

    Article  CAS  Google Scholar 

  41. Endemann DH et al. (2004) Eplerenone prevents salt-induced vascular remodeling and cardiac fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension 43: 1252–1257

    Article  CAS  Google Scholar 

  42. Rocha R et al. (1999) Role of aldosterone in renal vascular injury in stroke-prone hypertensive rats. Hypertension 33: 232–237

    Article  CAS  Google Scholar 

  43. Zhou X et al. (2004) Aldosterone antagonism ameliorates proteinuria and nephrosclerosis independent of glomerular dynamics in L-NAME/SHR model. Am J Nephrol 24: 242–249

    Article  CAS  Google Scholar 

  44. Guo C et al. (2006) Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus. Endocrinology 147: 5363–5373

    Article  CAS  Google Scholar 

  45. Burgess ED et al. (2003) Long-term safety and efficacy of the selective aldosterone blocker eplerenone in patients with essential hypertension. Clin Ther 25: 2388–2404

    Article  CAS  Google Scholar 

  46. Weinberger MH et al. (2002) Eplerenone, a selective aldosterone blocker, in mild-to-moderate hypertension. Am J Hypertens 15: 709–716

    Article  CAS  Google Scholar 

  47. Juurlink DN et al. (2004) Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N Engl J Med 351: 543–551

    Article  CAS  Google Scholar 

  48. White WB et al. (2003) Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension. Hypertension 41: 1021–1026

    Article  CAS  Google Scholar 

  49. Williams GH et al. (2004) Efficacy of eplerenone versus enalapril as monotherapy in systemic hypertension. Am J Cardiol 93: 990–996

    Article  CAS  Google Scholar 

  50. Weinberger MH et al. (2005) Effects of eplerenone versus losartan in patients with low-renin hypertension. Am Heart J 150: 426–433

    Article  CAS  Google Scholar 

  51. Flack JM et al. (2003) Efficacy and tolerability of eplerenone and losartan in hypertensive black and white patients. J Am Coll Cardiol 41: 1148–1155

    Article  CAS  Google Scholar 

  52. Prisant LM et al. (2003) Can renin status predict the antihypertensive efficacy of eplerenone add-on therapy? J Clin Pharmacol 43: 1203–1210

    Article  CAS  Google Scholar 

  53. Krum H et al. (2002) Efficacy of eplerenone added to renin-angiotensin blockade in hypertensive patients. Hypertension 40: 117–123

    Article  CAS  Google Scholar 

  54. Pitt B et al. (2003) Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation 108: 1831–1838

    Article  CAS  Google Scholar 

  55. Sato A et al. (2003) Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension 41: 64–68

    Article  CAS  Google Scholar 

  56. Epstein M et al. (2006) Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol 1: 940–951

    Article  CAS  Google Scholar 

  57. Pitt B et al. (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348: 1309–1321

    Article  CAS  Google Scholar 

  58. Suzuki G et al. (2002) Effects of long-term monotherapy with eplerenone, a novel aldosterone blocker, on progression of left ventricular dysfunction and remodeling in dogs with heart failure. Circulation 106: 2967–2972

    Article  CAS  Google Scholar 

  59. Zannad F et al. (2000) Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the Randomized Aldactone Evaluation Study (RALES). RALES Investigators. Circulation 102: 2700–2706

    Article  CAS  Google Scholar 

  60. Shroff SC et al. (2006) Selective aldosterone blockade suppresses atrial tachyarrhythmias in heart failure. J Cardiovasc Electrophysiol 17: 534–541

    Article  Google Scholar 

  61. De Mello WC (2006) Beneficial effect of eplerenone on cardiac remodelling and electrical properties of the failing heart. J Renin Angiotensin Aldosterone Syst 7: 40–46

    Article  CAS  Google Scholar 

  62. Farquharson CA and Struthers AD (2002) Increasing plasma potassium with amiloride shortens the QT interval and reduces ventricular extrasystoles but does not change endothelial function or heart rate variability in chronic heart failure. Heart 88: 475–480

    Article  CAS  Google Scholar 

  63. Joffe HV et al. (2007) Beneficial effects of eplerenone versus hydrochlorothiazide on coronary circulatory function in patients with diabetes mellitus. J Clin Endocrinol Metab 92: 2552–2558

    Article  CAS  Google Scholar 

  64. Swedberg K et al. (2005) Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Eur Heart J 26: 1115–1140

    Article  Google Scholar 

  65. Cleland JG et al. (2007) Clinical trials update from the American College of Cardiology 2007: ALPHA, EVEREST, FUSION II, VALIDD, PARR-2, REMODEL, SPICE, COURAGE, COACH, REMADHE, pro-BNP for the evaluation of dyspnoea and THIS-diet. Eur J Heart Fail 9: 740–745

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John MC Connell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McManus, F., McInnes, G. & Connell, J. Drug Insight: eplerenone, a mineralocorticoid-receptor antagonist. Nat Rev Endocrinol 4, 44–52 (2008). https://doi.org/10.1038/ncpendmet0676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet0676

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing