Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors

Article metrics

Abstract

Genetically encoded fluorescence voltage sensors offer the possibility of directly visualizing neural spiking dynamics in cells targeted by their genetic class or connectivity. Sensors of this class have generally suffered performance-limiting tradeoffs between modest brightness, sluggish kinetics and limited signalling dynamic range in response to action potentials. Here we describe sensors that use fluorescence resonance energy transfer (FRET) to combine the rapid kinetics and substantial voltage-dependence of rhodopsin family voltage-sensing domains with the brightness of genetically engineered protein fluorophores. These FRET-opsin sensors significantly improve upon the spike detection fidelity offered by the genetically encoded voltage sensor, Arclight, while offering faster kinetics and higher brightness. Using FRET-opsin sensors we imaged neural spiking and sub-threshold membrane voltage dynamics in cultured neurons and in pyramidal cells within neocortical tissue slices. In live mice, rates and optical waveforms of cerebellar Purkinje neurons’ dendritic voltage transients matched expectations for these cells’ dendritic spikes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Design and membrane localization of FRET-opsin sensor constructs in cultured neurons.
Figure 2: MacQ-based sensors exhibit transient but not steady-state photocurrents.
Figure 3: FRET-opsin sensors report voltage depolarization via decreases in emission intensity from the fluorescence donor.
Figure 4: The rapid kinetics of MacQ sensors provide a superior frequency response curve as compared with Arclight.
Figure 5: Mac voltage sensors report single action potentials with higher spike detection fidelity than Arclight.
Figure 6: MacQ-mCitrine reports spikes from excitatory neurons in brain slices.
Figure 7: The MacQ-mCitrine sensor reports voltage transients in the dendrites of Purkinje neurons in live mice.

References

  1. 1

    Peterka, D. S., Takahashi, H. & Yuste, R. Imaging voltage in neurons. Neuron 69, 9–21 (2011).

  2. 2

    Mutoh, H., Akemann, W. & Knöpfel, T. Genetically engineered fluorescent voltage reporters. ACS Chem. Neurosci. 3, 585–592 (2012).

  3. 3

    Grinvald, A. & Hildesheim, R. VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874–885 (2004).

  4. 4

    Chemla, S. & Chavane, F. Voltage-sensitive dye imaging: technique review and models. J. Physiol. Paris 104, 40–50 (2010).

  5. 5

    Salzberg, B. M., Grinvald, A., Cohen, L. B., Davila, H. V. & Ross, W. N. Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J. Neurophysiol. 40, 1281–1291 (1977).

  6. 6

    Salzberg, B. M., Obaid, A. L. & Bezanilla, F. Microsecond response of a voltage-sensitive merocyanine dye: fast voltage-clamp measurements on squid giant axon. Jpn J. Physiol. 43, (Suppl. 1): S37–S41 (1993).

  7. 7

    Yan, P. et al. Palette of fluorinated voltage-sensitive hemicyanine dyes. PNAS 109, 20443–20448 (2012).

  8. 8

    Chanda, B. et al. A hybrid approach to measuring electrical activity in genetically specified neurons. Nat. Neurosci. 8, 1619–1626 (2005).

  9. 9

    Sjulson, L. & Miesenbock, G. Rational optimization and imaging in vivo of a genetically encoded optical voltage reporter. J. Neurosci. 28, 5582 (2008).

  10. 10

    Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

  11. 11

    Sakai, R., Repunte-Canonigo, V., Raj, C. D. & Knöpfel, T. Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur. J. Neurosci. 13, 2314–2318 (2001).

  12. 12

    Lundby, A., Mutoh, H., Dimitrov, D., Akemann, W. & Knöpfel, T. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One 3, e2514 (2008).

  13. 13

    Lundby, A., Akemann, W. & Knöpfel, T. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP. Eur. Biophys. J. 39, 1625–1635 (2010).

  14. 14

    Mutoh, H. et al. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS One 4, e4555 (2009).

  15. 15

    Tsutsui, H., Karasawa, S., Okamura, Y. & Miyawaki, A. Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat. Methods 5, 683–685 (2008).

  16. 16

    Lam, A. J. et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat. Methods 9, 1005–1012 (2012).

  17. 17

    Jin, L. et al. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75, 779–785 (2012).

  18. 18

    Barnett, L., Platisa, J., Popovic, M., Pieribone, V. A. & Hughes, T. A fluorescent, genetically-encoded voltage probe capable of resolving action potentials. PLoS One 7, e43454 (2012).

  19. 19

    Perron, A., Mutoh, H., Launey, T. & Knöpfel, T. Red-shifted voltage-sensitive fluorescent proteins. Chem. Biol. 16, 1268–1277 (2009).

  20. 20

    Mishina, Y., Mutoh, H. & Knöpfel, T. Transfer of Kv3.1 voltage sensor features to the isolated Ci-VSP voltage-sensing domain. Biophys. J. 103, 669–676 (2012).

  21. 21

    Akemann, W. et al. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J. Neurophysiol. 108, 2323–2337 (2012).

  22. 22

    Cao, G. et al. Genetically targeted optical electrophysiology in intact neural circuits. Cell 154, 904–913 (2013).

  23. 23

    Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

  24. 24

    Lanyi, J. K. Bacteriorhodopsin. Ann. Rev. Phys. 66, 665–688 (2004).

  25. 25

    Lanyi, J. K. Proton transfer and energy coupling in the bacteriorhodopsin photocycle. J. Bioenerg. Biomembr. 24, 169–179 (1992).

  26. 26

    Kralj, J. M., Douglass, A. D., Hochbaum, D. R., Maclaurin, D. & Cohen, A. E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90–95 (2012).

  27. 27

    Kralj, J. M., Hochbaum, D. R., Douglass, A. D. & Cohen, A. E. Electrical spiking in Escherichia coli probed with a fluorescent voltage indicating protein. Science 333, 345–348 (2011).

  28. 28

    Gong, Y., Li, J. Z. & Schnitzer, M. J. Enhanced archaerhodopsin fluorescent protein voltage sensors. PLOS One 8, e66959 (2013).

  29. 29

    Wilt, B. A., Fitzgerald, J. E. & Schnitzer, M. J. Photon shot-noise limits on optical detection of neuronal spikes and estimation of spike timing. Biophys. J. 104, 51–62 (2013).

  30. 30

    Cohen, A. E., Douglass, A. D. & Kralj, J. M. Optogenetic probes for measuring membrane potential. US Patent application (WO2012027358 A1). Filed 23 Aug 2011.

  31. 31

    Bayraktar, H. et al. Ultrasensitive measurements of microbial rhodopsin photocycles using photochromic FRET. Photochem. Photobiol. 88, 90–97 (2012).

  32. 32

    Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9, 159–172 (2011).

  33. 33

    Maclaurin, D., Venkatachalam, V., Lee, H. & Cohen, A. E. Mechanism of voltage-sensitive fluorescence in a microbial rhodopsin. Proc. Natl Acad. Sci. USA 110, 5939–5944 (2013).

  34. 34

    Kolodner, P., Lukashev, E. P., Ching, Y. & Rousseau, D. L. Electric-field-induced Schiff-base deprotonation in D85N mutant bacteriorhodopsin. Proc. Natl Acad. Sci. USA 93, 11618–11621 (1996).

  35. 35

    Moltke, S., Krebs, M. P., Mollaaghababa, R., Khorana, H. G. & Heyn, M. P. Intramolecular charge transfer in the bacteriorhodopsin mutants Asp85-Asn and Asp212-Asn: effects of pH and anions. Biophys. J. 69, 2074–2083 (1995).

  36. 36

    Marinetti, T., Subramaniam, S., Mogi, T., Marti, T. & Khorana, H. G. Replacement of aspartic residues 85, 96, 115, or 212 affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin. Proc. Natl Acad. Sci. USA 86, 529–553 (1989).

  37. 37

    Gradinaru, V., Thompson, K. R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

  38. 38

    Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

  39. 39

    Hofherr, A., Fakler, B. & Klocker, N. Selective Golgi export of Kir2.1 controls the stoichiometry of functional Kir2.x channel heteromers. J. Cell. Sci. 118, 1935–1943 (2005).

  40. 40

    Arrenberg, A. B., Del Bene, F. & Baier, H. Optical control of zebrafish behavior with halorhodopsin. Proc. Natl Acad. Sci. USA 106, 17968–17973 (2009).

  41. 41

    Clement, A. F. & Barnard, J. W. A quantitative study of the Purkinje cell dendritic branchlets and their relationship to afferent fibres. J. Anat. 91, 299–313 (1957).

  42. 42

    Zagha, E., Lang, E. J. & Rudy, B. Kv3.3 channels at the Purkinje cell soma are necessary for generation of the classical complex spike waveform. J. Neurosci. 28, 1291–1300 (2008).

  43. 43

    Kitamura, K. & Häusser, M. Dendritic calcium signaling triggered by spontaneous and sensory-evoked climbing fiber input to cerebellar purkinje cells in vivo. J. Neurosci. 31, 10847–10858 (2011).

  44. 44

    Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H. & Buzsaki, G. Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. J. Neurophysiol. 84, 401–414 (1999).

  45. 45

    Flusberg, B. A. et al. High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Methods 5, 935–938 (2008).

  46. 46

    Llinás, R. & Sugimori, M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. 305, 197–213 (1980).

  47. 47

    Mukamel, E. A., Nimmerjahn, A. & Schnitzer, M. J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63, 747–760 (2009).

  48. 48

    Ozden, I., Lee, H. M., Sullivan, M. R. & Wang, S. S. H. Identification and clustering of event patterns from in vivo multiphoton optical recordings of neuronal ensembles. J. Neurophys. 29, 10463–10473 (2009).

  49. 49

    Schultz, S. R., Kitamura, K., Post-Uiterweer, A., Krupic, J. & Häusser, M. Spatial pattern coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring cerebellar Purkinje cells. J. Neurosci. 29, 8005–8015 (2009).

  50. 50

    Zou, P. et al. Bright and fast voltage reporters across the visible spectrum via electrochromic FRET (eFRET). arXiv: 1403.4636 (2014).

  51. 51

    St-Pierre, F. et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci doi:10.1038/nn.3709.

  52. 52

    Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

  53. 53

    Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

  54. 54

    Xiao, X., Li, J. & Samulski, R. J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232 (1998).

  55. 55

    Lock, M. et al. Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum. Gene Ther. 21, 1259–1271 (2010).

Download references

Acknowledgements

We thank Yanping Zhang for help with protein extraction, Jesse Marshall for help with the electroporation protocol, Jane Li for maintenance of the Parv-Cre mouse line, Amy Lam for help with spectroscopy measurements, Michael Z. Lin for providing Arclight, mCitrine, and mOrange2 plasmids, and Larry Zweifel of University of Washington for providing the CAG-DIO backbone plasmid. We gratefully acknowledge research funding from DARPA, the Stanford CNC program, the Stanford BioX Interdisciplinary Initiatives Program (IIP), the NIH-Stanford Neuroscience Graduate Training Grant and the National Academies Keck Futures Initiative (NAKFI) research grant.

Author information

Y.G. designed, cloned and characterized the various sensor constructs in vitro. J.Z.L. produced the viruses. Y.G. and M.J.W. performed the experiments in vivo and analysed the data. M.J.S. supervised the research. Y.G. and M.J.S. wrote the manuscript. All authors edited the manuscript.

Correspondence to Yiyang Gong or Mark J. Schnitzer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-6 and Supplementary Table 1 (PDF 1181 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Wagner, M., Zhong Li, J. et al. Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nat Commun 5, 3674 (2014) doi:10.1038/ncomms4674

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.