Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Introducing genetically encoded aldehydes into proteins


Methods for introducing bioorthogonal functionalities into proteins have become central to protein engineering efforts. Here we describe a method for the site-specific introduction of aldehyde groups into recombinant proteins using the 6-amino-acid consensus sequence recognized by the formylglycine-generating enzyme. This genetically encoded 'aldehyde tag' is no larger than a His6 tag and can be exploited for numerous protein labeling applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The sulfatase motif can serve as an aldehyde tag for site-specific protein modification.
Figure 2: Selective labeling of aldehyde-tagged proteins.

Accession codes




  1. 1

    Schmidt, B., Selmer, T., Ingendoh, A. & von Figura, K. Cell 82, 271–278 (1995).

    CAS  Article  Google Scholar 

  2. 2

    Cosma, M.P. et al. Cell 113, 445–456 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Dierks, T. et al. Cell 113, 435–444 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Dierks, T., Lecca, M.R., Schlotterhose, P., Schmidt, B. & von Figura, K. EMBO J. 18, 2084–2091 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Landgrebe, J., Dierks, T., Schmidt, B. & von Figura, K. Gene 316, 47–56 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Gilmore, J.M., Scheck, R.A., Esser-Kahn, A.P., Joshi, N.S. & Francis, M.B. Angew. Chem. Int. Edn Engl. 45, 5307–5311 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Link, A.J., Mock, M.L. & Tirrell, D.A. Curr. Opin. Biotechnol. 14, 603–609 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Chen, I., Howarth, M., Lin, W.Y. & Ting, A.Y. Nat. Methods 2, 99–104 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Griffin, B.A., Adams, S.R. & Tsien, R.Y. Science 281, 269–272 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Wang, L., Xie, J. & Schultz, P.G. Annu. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006).

    Article  Google Scholar 

  11. 11

    Clarke, K.M., Mercer, A.C., La Clair, J.J. & Burkart, M.D. J. Am. Chem. Soc. 127, 11234–11235 (2005).

    CAS  Article  Google Scholar 

  12. 12

    George, N., Pick, H., Vogel, H., Johnsson, N. & Johnsson, K. J. Am. Chem. Soc. 126, 8896–8897 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Yin, J., Liu, F., Li, X. & Walsh, C.T. J. Am. Chem. Soc. 126, 7754–7755 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Dierks, T. et al. J. Biol. Chem. 273, 25560–25564 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Harris, J.M. & Chess, R.B. Nat. Rev. Drug Discov. 2, 214–221 (2003).

    CAS  Article  Google Scholar 

Download references


We thank M. Francis and J. Rush for helpful discussions and D. King and A. Falick for MS expertise. I.S.C. was supported by a postdoctoral fellowship from the US National Institutes of Health. B.L.C. was supported by a predoctoral fellowship from the US National Science Foundation. This work was supported by a grant from the US National Institutes of Health to C.R.B. (GM59907).

Author information




I.S.C. and B.L.C. carried out cloning, expression, purification and fluorescent tagging of the constructs. I.S.C. quantified conversion to fGly and performed multiple epitope assays. B.L.C. performed PEGylation assays. C.R.B. directed the project. All authors worked together to compose the manuscript.

Corresponding author

Correspondence to Carolyn R Bertozzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Mass spectra confirming the presence of fGly in a tryptic peptide from ald13-Stf0. (PDF 222 kb)

Supplementary Fig. 2

Quantitation of the conversion of cysteine to formylglycine using mass spectrometry. (PDF 156 kb)

Supplementary Fig. 3

Quantitation of the conversion of cysteine to formylglycine using Alexa Fluor 647 C5-aminooxyacetamide labeling. (PDF 251 kb)

Supplementary Fig. 4

PEGylation of ald6-MBP with 2 kDa and 5 kDa aminooxy-PEG. (PDF 184 kb)

Supplementary Table 1

Oligonucleotides used in this study. (PDF 274 kb)

Supplementary Methods (PDF 285 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carrico, I., Carlson, B. & Bertozzi, C. Introducing genetically encoded aldehydes into proteins. Nat Chem Biol 3, 321–322 (2007).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing