Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues

Abstract

Mammalian tissues produce nitric oxide (NO) to modify proteins at heme and sulfhydryl sites, thereby regulating vital cell functions. The majority of NO produced is widely assumed to be neutralized into supposedly inert oxidation products including nitrite (NO2). Here we show that nitrite, also ubiquitous in dietary sources, is remarkably efficient at modifying the same protein sites, and that physiological nitrite concentrations account for the basal levels of these modifications in vivo. We further find that nitrite readily affects cyclic GMP production, cytochrome P450 activities, and heat shock protein 70 and heme oxygenase-1 expression in a variety of tissues. These cellular activities of nitrite, combined with its stability and abundance in vivo, suggest that this anion has a distinct and important signaling role in mammalian biology, perhaps by serving as an endocrine messenger and synchronizing agent. Thus, nitrite homeostasis may be of great importance to NO biology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Distribution kinetics of nitrite and nitrite-related nitrosation/nitrosylation and oxidation products after i.p. administration of 1.0 mg kg−1 nitrite in vivo.
Figure 2: Dose-dependent effects on nitrosation/nitrosylation, blood pressure and platelet aggregation upon nitrite administration.
Figure 3: Modulation of key signaling pathways in vivo by nitrite.
Figure 4: In vitro handling of nitrite in representative compartments.
Figure 5: Changes in steady-state concentrations of nitrite in blood and tissues and accompanying changes in basal cGMP levels, cytochrome P450 activity and Hsp70/HO-1 expression upon acute nitrite depletion.

References

  1. 1

    Thomas, D.D. et al. Heme proteins and nitric oxide (NO): the neglected, eloquent chemistry in NO redox signaling and regulation. Antioxid. Redox Signal. 5, 307–317 (2003).

    CAS  PubMed  Google Scholar 

  2. 2

    Schulz, R., Kelm, M. & Heusch, G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc. Res. 61, 402–413 (2004).

    CAS  PubMed  Google Scholar 

  3. 3

    Ignarro, L.J., Fukuto, J.M., Griscavage, J.M., Rogers, N.E. & Byrns, R.E. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proc. Natl. Acad. Sci. USA 90, 8103–8107 (1993).

    CAS  PubMed  Google Scholar 

  4. 4

    Meah, M.N., Harrison, N. & Davies, A. Nitrate and nitrite in foods and the diet. Food Addit. Contam. 11, 519–532 (1994).

    CAS  PubMed  Google Scholar 

  5. 5

    Spiegelhalder, B., Eisenbrand, G. & Preussmann, R. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet. Toxicol. 14, 545–548 (1976).

    CAS  PubMed  Google Scholar 

  6. 6

    Gangolli, S.D. et al. Nitrate, nitrite, and N-nitroso compounds. Eur. J. Pharmacol. 292, 1–38 (1994).

    CAS  PubMed  Google Scholar 

  7. 7

    Zweier, J.L., Wang, P., Samouilov, A. & Kuppusamy, P. Enzyme-independent formation of nitric oxide in biological tissues. Nat. Med. 1, 804–809 (1995).

    CAS  PubMed  Google Scholar 

  8. 8

    Gladwin, M.T. et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in human. Proc. Natl. Acad. Sci. USA 97, 11482–11487 (2000).

    CAS  PubMed  Google Scholar 

  9. 9

    Cosby, K. et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 9, 1498–1505 (2003).

    CAS  PubMed  Google Scholar 

  10. 10

    Duranski, M.R. et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Invest. 115, 1232–1240 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Lundberg, J.O. & Weitzberg, E. NO generation from nitrite and its role in vascular control. Arterioscler. Thromb. Vasc. Biol. 25, 915–922 (2005).

    CAS  PubMed  Google Scholar 

  12. 12

    Gladwin, M.T. Haldane, hot dogs, halitosis, and hypoxic vasodilation: the emerging biology of the nitrite anion. J. Clin. Invest. 113, 19–21 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Parks, N.J. et al. Nitrogen-13-Labeled nitrite and nitrate: distribution and metabolism after intratracheal administration. Science 212, 58–61 (1981).

    CAS  PubMed  Google Scholar 

  14. 14

    Thayer, J.R., Chasko, J.H., Swartz, L.A. & Parks, N.J. Gut reactions of radioactive nitrite after intratracheal administration in mice. Science 217, 151–153 (1982).

    CAS  PubMed  Google Scholar 

  15. 15

    Kelm, M. Nitric oxide metabolism and breakdown. Biochim. Biophys. Acta 1411, 273–289 (1999).

    CAS  PubMed  Google Scholar 

  16. 16

    Rath, M.M. & Krantz, J.C.J. Nitrites: a further study of the mechanism of the action of organic nitrates. J. Pharmacol. Exp. Ther. 76, 33–38 (1942).

    CAS  Google Scholar 

  17. 17

    Vleeming, W., van de Kuil, A., te Biesebeek, J.D., Meulenbelt, J. & Boink, A.B. Effect of nitrite on blood pressure in anaesthetized and free-moving rats. Food Chem. Toxicol. 35, 615–619 (1997).

    CAS  PubMed  Google Scholar 

  18. 18

    Reichert, E.T. & Mitchell, S.W. On the physiological action of potassium nitrite, with a note on the physiological action on man. Am. J. Med. Sci. 159, 158–180 (1880).

    Google Scholar 

  19. 19

    Crawford, J.H. et al. Transduction of NO-bioactivity by the red blood cell in sepsis: novel mechanisms of vasodilation during acute inflammatory disease. Blood 104, 1375–1382 (2004).

    CAS  PubMed  Google Scholar 

  20. 20

    Malyshev, I.Y., Manukhina, E.B., Mikoyan, V.D., Kubrina, L.N. & Vanin, A.F. Nitric oxide is involved in heat-induced Hsp70 accumulation. FEBS Lett. 370, 159–162 (1995).

    CAS  PubMed  Google Scholar 

  21. 21

    Motterlini, R., Green, C.J. & Foresti, R. Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antioxid. Redox Signal. 4, 615–624 (2002).

    CAS  PubMed  Google Scholar 

  22. 22

    Wink, D.A., Darbyshire, J.F., Nims, R.W., Saavedra, J.E. & Ford, P.C. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem. Res. Toxicol. 6, 23–27 (1993).

    CAS  PubMed  Google Scholar 

  23. 23

    Kim-Shapiro, D.B., Gladwin, M.T., Patel, R.P. & Hogg, N. The reaction between nitrite and hemoglobin: the role of nitrite in hemoglobin-mediated hypoxic vasodilation. J. Inorg. Biochem. 99, 237–246 (2005).

    CAS  PubMed  Google Scholar 

  24. 24

    Bryan, N.S. et al. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc. Natl. Acad. Sci. USA 101, 4308–4313 (2004).

    CAS  PubMed  Google Scholar 

  25. 25

    Pilz, R.B. & Casteel, D.E. Regulation of gene expression by cyclic GMP. Circ. Res. 93, 1034–1046 (2003).

    CAS  PubMed  Google Scholar 

  26. 26

    Panesar, N.S. & Chan, K.W. Decreased steroid hormone synthesis from inorganic nitrite and nitrate: studies in vitro and in vivo. Toxicol. Appl. Pharmacol. 169, 222–230 (2000).

    CAS  PubMed  Google Scholar 

  27. 27

    Marshall, H.E., Merchant, K. & Stamler, J.S. Nitrosation and oxidation in the regulation of gene expression. FASEB J. 14, 1889–1900 (2000).

    CAS  PubMed  Google Scholar 

  28. 28

    Papp, E., Nardai, G., Soti, C. & Csermely, P. Molecular chaperones, stress proteins and redox homeostasis. Biofactors 17, 249–257 (2003).

    CAS  PubMed  Google Scholar 

  29. 29

    Balashova, N., Chang, F.J., Lamothe, M., Sun, Q. & Beuve, A. Characterization of a novel type of endogenous activator of soluble guanylyl cyclase. J. Biol. Chem. 280, 2186–2196 (2005).

    CAS  PubMed  Google Scholar 

  30. 30

    Webb, A. et al. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc. Natl. Acad. Sci. USA 101, 13683–13688 (2004).

    CAS  PubMed  Google Scholar 

  31. 31

    Otterbein, L.E., Soares, M.P., Yamashita, K. & Bach, F.H. Heme-oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 24, 449–455 (2003).

    CAS  PubMed  Google Scholar 

  32. 32

    Sunamura, M. et al. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis 6, 15–24 (2003).

    CAS  PubMed  Google Scholar 

  33. 33

    Fang, J. et al. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Res. 63, 3567–3574 (2003).

    CAS  PubMed  Google Scholar 

  34. 34

    Feelisch, M. & Martin, J. The early role of nitric oxide in evolution. Trends Ecol. Evol. 10, 496–499 (1995).

    CAS  PubMed  Google Scholar 

  35. 35

    Lundberg, J.O. & Govoni, M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med. 37, 395–400 (2004).

    CAS  PubMed  Google Scholar 

  36. 36

    Lundberg, J.O., Weitzberg, E., Cole, J.A. & Benjamin, N. Nitrate, bacteria and human health. Nat. Rev. Microbiol. 2, 593–602 (2004).

    CAS  PubMed  Google Scholar 

  37. 37

    Marley, R., Feelisch, M., Holt, S. & Moore, K. A chemiluminscent-based assay for S-nitrosoalbumin and other plasma S-nitrosothiols. Free Radic. Res. 32, 1–9 (2000).

    CAS  PubMed  Google Scholar 

  38. 38

    Feelisch, M. et al. Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: implications for the fate of NO in vivo. FASEB J. 16, 1775–1785 (2002).

    CAS  PubMed  Google Scholar 

  39. 39

    Rassaf, T., Bryan, N.S., Kelm, M. & Feelisch, M. Concomitant presence of N-nitroso and S-nitroso proteins in human plasma. Free Radic. Biol. Med. 33, 1590–1596 (2002).

    CAS  PubMed  Google Scholar 

  40. 40

    Burke, M.D. et al. Ethoxy-, pentoxy- and benzyloxyphenoxazones and homologues: a series of substrates to distinguish between different induced cytochrome P-450. Biochem. Pharmacol. 34, 3337–3345 (1985).

    CAS  PubMed  Google Scholar 

  41. 41

    Ghosal, A. et al. Rapid determination of enzyme activities of recombinant human cytochromes P450, human liver microsomes and hepatocytes. Biopharm. Drug Dispos. 24, 375–384 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank F. Saijo and D. Perlman for skillful technical assistance and M. Kelm, M. Bausero and C. Brame for helpful comments. N.S.B. and B.O.F. are recipients of the Kirschstein–National Research Service Award Cardiovascular Training Grant from the US National Institutes of Health (NIH). This work was supported in part by a grant from the NIH (HL69029 to M.F.). T.R. is a research fellow sponsored by the Deutshe Forschungsgesellschaft.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Feelisch.

Ethics declarations

Competing interests

M.F. is a paid consultant and member of the Scientific Advisory Board of Nitromed, Inc.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bryan, N., Fernandez, B., Bauer, S. et al. Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat Chem Biol 1, 290–297 (2005). https://doi.org/10.1038/nchembio734

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing