Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthetic beta cells for fusion-mediated dynamic insulin secretion

This article has been updated


Generating artificial pancreatic beta cells by using synthetic materials to mimic glucose-responsive insulin secretion in a robust manner holds promise for improving clinical outcomes in people with diabetes. Here, we describe the construction of artificial beta cells (AβCs) with a multicompartmental 'vesicles-in-vesicle' superstructure equipped with a glucose-metabolism system and membrane-fusion machinery. Through a sequential cascade of glucose uptake, enzymatic oxidation and proton efflux, the AβCs can effectively distinguish between high and normal glucose levels. Under hyperglycemic conditions, high glucose uptake and oxidation generate a low pH (<5.6), which then induces steric deshielding of peptides tethered to the insulin-loaded inner small liposomal vesicles. The peptides on the small vesicles then form coiled coils with the complementary peptides anchored on the inner surfaces of large vesicles, thus bringing the membranes of the inner and outer vesicles together and triggering their fusion and insulin 'exocytosis'.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design and synthesis of AβCs.
Figure 2: Biochemical processes inside AβCs.
Figure 3: Membrane fusion of ISVs and OLVs after glucose metabolism.
Figure 4: In vitro insulin secretion from AβCs and in vivo type 1 diabetes treatment.

Accession codes

Primary accessions


Change history

  • 14 November 2017

    In the version of this article initially published online, the wavelength depicted at the top of Figure 2g was mislabeled as 563 nm instead of 536 nm. The error has been corrected in the PDF and HTML versions of this article.


  1. 1

    Rorsman, P. & Braun, M. Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 75, 155–179 (2013).

    CAS  PubMed  Google Scholar 

  2. 2

    Yu, J. et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA 112, 8260–8265 (2015).

    CAS  PubMed  Google Scholar 

  3. 3

    Ohkubo, Y. et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res. Clin. Pract. 28, 103–117 (1995).

    CAS  PubMed  Google Scholar 

  4. 4

    Nathan, D.M. Long-term complications of diabetes mellitus. N. Engl. J. Med. 328, 1676–1685 (1993).

    CAS  PubMed  Google Scholar 

  5. 5

    Nathan, D.M. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37, 9–16 (2014).

    CAS  PubMed  Google Scholar 

  6. 6

    Nathan, D.M. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    CAS  PubMed  Google Scholar 

  7. 7

    Orchard, T.J. et al. Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality. J. Am. Med. Assoc. 313, 45–53 (2015).

    CAS  Google Scholar 

  8. 8

    Xie, M. et al. β-cell-mimetic designer cells provide closed-loop glycemic control. Science 354, 1296–1301 (2016).

    CAS  PubMed  Google Scholar 

  9. 9

    Pepper, A.R. et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat. Biotechnol. 33, 518–523 (2015).

    CAS  PubMed  Google Scholar 

  10. 10

    Vegas, A.J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Veiseh, O., Tang, B.C., Whitehead, K.A., Anderson, D.G. & Langer, R. Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug Discov. 14, 45–57 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Zhang, Y., Ruder, W.C. & LeDuc, P.R. Artificial cells: building bioinspired systems using small-scale biology. Trends Biotechnol. 26, 14–20 (2008).

    PubMed  Google Scholar 

  13. 13

    Szostak, J.W., Bartel, D.P. & Luisi, P.L. Synthesizing life. Nature 409, 387–390 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Hu, C.-M.J., Fang, R.H., Luk, B.T. & Zhang, L. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 8, 933–938 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Hu, C.-M.J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Brown, A.C. et al. Ultrasoft microgels displaying emergent platelet-like behaviours. Nat. Mater. 13, 1108–1114 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Hu, Q. et al. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. 28, 9573–9580 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Molinaro, R. et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat. Mater. 15, 1037–1046 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Boyer, C. & Zasadzinski, J.A. Multiple lipid compartments slow vesicle contents release in lipases and serum. ACS Nano 1, 176–182 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Wong, B. et al. Design and in situ characterization of lipid containers with enhanced drug retention. Adv. Mater. 23, 2320–2325 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Marguet, M., Edembe, L. & Lecommandoux, S. Polymersomes in polymersomes: multiple loading and permeability control. Angew. Chem. Int. Ed. Engl. 51, 1173–1176 (2012).

    CAS  PubMed  Google Scholar 

  22. 22

    Peters, R.J.R.W. et al. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem. Int. Ed. Engl. 53, 146–150 (2014).

    CAS  PubMed  Google Scholar 

  23. 23

    Elani, Y., Law, R.V. & Ces, O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat. Commun. 5, 5305–5309 (2014).

    CAS  PubMed  Google Scholar 

  24. 24

    Chiu, H.-C., Lin, Y.-W., Huang, Y.-F., Chuang, C.-K. & Chern, C.-S. Polymer vesicles containing small vesicles within interior aqueous compartments and pH-responsive transmembrane channels. Angew. Chem. Int. Ed. Engl. 47, 1875–1878 (2008).

    CAS  PubMed  Google Scholar 

  25. 25

    Lu, Y., Aimetti, A.A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2016).

    Google Scholar 

  26. 26

    Hata, Y., Slaughter, C.A. & Südhof, T.C. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366, 347–351 (1993).

    CAS  PubMed  Google Scholar 

  27. 27

    Kaiser, C.A. & Schekman, R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61, 723–733 (1990).

    CAS  PubMed  Google Scholar 

  28. 28

    Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    PubMed  Google Scholar 

  29. 29

    Marsden, H.R., Tomatsu, I. & Kros, A. Model systems for membrane fusion. Chem. Soc. Rev. 40, 1572–1585 (2011).

    CAS  PubMed  Google Scholar 

  30. 30

    Lygina, A.S., Meyenberg, K., Jahn, R. & Diederichsen, U. Transmembrane domain peptide/peptide nucleic acid hybrid as a model of a SNARE protein in vesicle fusion. Angew. Chem. Int. Ed. Engl. 50, 8597–8601 (2011).

    CAS  PubMed  Google Scholar 

  31. 31

    Robson Marsden, H., Elbers, N.A., Bomans, P.H.H., Sommerdijk, N.A.J.M. & Kros, A. A reduced SNARE model for membrane fusion. Angew. Chem. Int. Ed. Engl. 48, 2330–2333 (2009).

    PubMed  Google Scholar 

  32. 32

    Meyenberg, K., Lygina, A.S., van den Bogaart, G., Jahn, R. & Diederichsen, U. SNARE derived peptide mimic inducing membrane fusion. Chem. Commun. (Camb.) 47, 9405–9407 (2011).

    CAS  Google Scholar 

  33. 33

    Tomatsu, I. et al. Influence of pegylation on peptide-mediated liposome fusion. J. Mater. Chem. 21, 18927–18933 (2011).

    CAS  Google Scholar 

  34. 34

    Kong, L., Askes, S.H.C., Bonnet, S., Kros, A. & Campbell, F. Temporal control of membrane fusion through photolabile PEGylation of liposome membranes. Angew. Chem. Int. Ed. Engl. 55, 1396–1400 (2016).

    CAS  PubMed  Google Scholar 

  35. 35

    Gong, Y., Ma, M., Luo, Y. & Bong, D. Functional determinants of a synthetic vesicle fusion system. J. Am. Chem. Soc. 130, 6196–6205 (2008).

    CAS  PubMed  Google Scholar 

  36. 36

    Chan, Y.-H.M., van Lengerich, B. & Boxer, S.G. Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. Proc. Natl. Acad. Sci. USA 106, 979–984 (2009).

    CAS  Google Scholar 

  37. 37

    Steinmetz, M.O. et al. Molecular basis of coiled-coil formation. Proc. Natl. Acad. Sci. USA 104, 7062–7067 (2007).

    CAS  PubMed  Google Scholar 

  38. 38

    Mo, R., Jiang, T. & Gu, Z. Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew. Chem. Int. Ed. Engl. 53, 5815–5820 (2014).

    CAS  PubMed  Google Scholar 

  39. 39

    Zhao, C., Qu, K., Ren, J. & Qu, X. Proton-fueled DNA-duplex-based stimuli-responsive reversible assembly of single-walled carbon nanotubes. Chemistry 17, 7013–7019 (2011).

    CAS  PubMed  Google Scholar 

  40. 40

    Li, X., Peng, Y., Ren, J. & Qu, X. Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. Proc. Natl. Acad. Sci. USA 103, 19658–19663 (2006).

    CAS  PubMed  Google Scholar 

  41. 41

    Kisak, E.T., Coldren, B. & Zasadzinski, J.A. Nanocompartments enclosing vesicles, colloids, and macromolecules via interdigitated lipid bilayers. Langmuir 18, 284–288 (2002).

    CAS  Google Scholar 

  42. 42

    Tunuguntla, R.H., Allen, F.I., Kim, K., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 11, 639–644 (2016).

    CAS  PubMed  Google Scholar 

  43. 43

    Efrat, S. Making sense of glucose sensing. Nat. Genet. 17, 249–250 (1997).

    CAS  PubMed  Google Scholar 

  44. 44

    Matsumoto, R. et al. A liposome-based energy conversion system for accelerating the multi-enzyme reactions. Phys. Chem. Chem. Phys. 12, 13904–13906 (2010).

    CAS  PubMed  Google Scholar 

  45. 45

    Wang, Z. & Thurmond, D.C. Mechanisms of biphasic insulin-granule exocytosis: roles of the cytoskeleton, small GTPases and SNARE proteins. J. Cell Sci. 122, 893–903 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Schuette, C.G. et al. Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc. Natl. Acad. Sci. USA 101, 2858–2863 (2004).

    CAS  PubMed  Google Scholar 

  47. 47

    Mo, R., Jiang, T., Di, J., Tai, W. & Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 43, 3595–3629 (2014).

    CAS  PubMed  Google Scholar 

  48. 48

    Kitabchi, A.E., Umpierrez, G.E., Miles, J.M. & Fisher, J.N. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 32, 1335–1343 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Park, M.H., Joo, M.K., Choi, B.G. & Jeong, B. Biodegradable thermogels. Acc. Chem. Res. 45, 424–433 (2012).

    CAS  PubMed  Google Scholar 

  50. 50

    Ye, H., Daoud-El Baba, M., Peng, R.-W. & Fussenegger, M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332, 1565–1568 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Peppas, N.A. & Khademhosseini, A. Make better, safer biomaterials. Nature 540, 335–338 (2016).

    CAS  PubMed  Google Scholar 

  52. 52

    Bakh, N.A. et al. Glucose-responsive insulin by molecular and physical design. Nat. Chem. 9, 937–943 (2017).

    CAS  PubMed  Google Scholar 

  53. 53

    Boni, L.T. et al. Curvature dependent induction of the interdigitated gel phase in DPPC vesicles. Biochim. Biophys. Acta 1146, 247–257 (1993).

    CAS  PubMed  Google Scholar 

  54. 54

    Ahl, P.L. et al. Interdigitation-fusion: a new method for producing lipid vesicles of high internal volume. Biochim. Biophys. Acta 1195, 237–244 (1994).

    PubMed  Google Scholar 

  55. 55

    Kasahara, M. & Hinkle, P.C. Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes. Proc. Natl. Acad. Sci. USA 73, 396–400 (1976).

    CAS  PubMed  Google Scholar 

  56. 56

    Kano, K. & Fendler, J.H. Pyranine as a sensitive pH probe for liposome interiors and surfaces. pH gradients across phospholipid vesicles. Biochim. Biophys. Acta 509, 289–299 (1978).

    CAS  PubMed  Google Scholar 

Download references


This work was supported by grants from the American Diabetes Association (grant no. 1-15-ACE-21 to Z.G.), Alfred P. Sloan Foundation (Sloan Research Fellowship to Z.G.), National Science Foundation (grant no. 1708620 to Z.G.) and NC TraCS, NIH's Clinical and Translational Science Award (CTSA, grant no. 1UL1TR001111) at UNC-CH. This work was performed in part at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (grant no. 1542015). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI). The authors also thank P. Chipman and R. Alvarado at the University of Florida's ICBR center.

Author information




Z.C., F.S.L., J.B.B. and Z.G. designed the project; Z.C., J.W., W.S., E.A., X.Z. and Y.L. performed the experiments; Z.C., J.W., W.S., X.Z., E.A., Y.L. and Z.G. analyzed the data; Z.C., J.W., A.R.K., J.B.B., F.S.L. and Z.G. wrote the paper.

Corresponding author

Correspondence to Zhen Gu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–34, Supplementary Note: Plasmid map and full plasmid sequence for glucose transporter 2 (GLUT2) (PDF 7430 kb)

Life Sciences Reporting Summary (PDF 1479 kb)

A movie showing the liposomes-in-liposome superstructures.

The inner small liposomes were incorporated with lipids labelled with nitrobenzofuran and outer larger liposome was incorporated with lipids labeled with lissamine rhodamine B. It can be seen that the small particles were moving randomly by Brownian motion inside the large liposomes. (MOV 200 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wang, J., Sun, W. et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat Chem Biol 14, 86–93 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing