Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation

Abstract

The ability to engineer custom cell-contact-sensing output devices into human nonimmune cells would be useful for extending the applicability of cell-based cancer therapies and for avoiding risks associated with engineered immune cells. Here we have developed a new class of synthetic T-cell receptor–like signal-transduction device that functions efficiently in human nonimmune cells and triggers release of output molecules specifically upon sensing contact with a target cell. This device employs an interleukin signaling cascade, whose OFF/ON switching is controlled by biophysical segregation of a transmembrane signal-inhibitory protein from the sensor cell–target cell interface. We further show that designer nonimmune cells equipped with this device driving expression of a membrane-penetrator/prodrug-activating enzyme construct could specifically kill target cells in the presence of the prodrug, indicating its potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer therapy. Our study also contributes to the advancement of synthetic biology by extending available design principles to transmit extracellular information to cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Evaluation of CD43ex-45int for suppressing cytokine receptor-mediated signaling pathways.
Figure 2: Development of the specific-cell-contact-sensing device.
Figure 3: The optimized specific-cell-contact-sensing system.
Figure 4: Application to target-cell-specific activatable enzyme-prodrug cancer therapy.

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. 1

    Almåsbak, H., Aarvak, T. & Vemuri, M.C. CAR T cell therapy: a game changer in cancer treatment. J. Immunol. Res. 2016, 5474602 (2016).

    Article  Google Scholar 

  2. 2

    Jackson, H.J., Rafiq, S. & Brentjens, R.J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13, 370–383 (2016).

    CAS  Article  Google Scholar 

  3. 3

    June, C.H., Blazar, B.R. & Riley, J.L. Engineering lymphocyte subsets: tools, trials and tribulations. Nat. Rev. Immunol. 9, 704–716 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Kalaitsidou, M., Kueberuwa, G., Schütt, A. & Gilham, D.E. CAR T-cell therapy: toxicity and the relevance of preclinical models. Immunotherapy 7, 487–497 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Kojima, R., Aubel, D. & Fussenegger, M. Novel theranostic agents for next-generation personalized medicine: small molecules, nanoparticles, and engineered mammalian cells. Curr. Opin. Chem. Biol. 28, 29–38 (2015).

    CAS  Article  Google Scholar 

  6. 6

    Kojima, R., Aubel, D. & Fussenegger, M. Toward a world of theranostic medication: Programming biological sentinel systems for therapeutic intervention. Adv. Drug Deliv. Rev. 105, 66–76 (2016).

    CAS  Article  Google Scholar 

  7. 7

    Zhang, H. et al. New strategies for the treatment of solid tumors with CAR-T cells. Int. J. Biol. Sci. 12, 718–729 (2016).

    CAS  Article  Google Scholar 

  8. 8

    Bonifant, C.L., Jackson, H.J., Brentjens, R.J. & Curran, K.J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics 3, 16011 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Geyer, M.B. & Brentjens, R.J. Review: current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy 18, 1393–1409 (2016).

    CAS  Article  Google Scholar 

  10. 10

    Park, J.S. et al. Synthetic control of mammalian-cell motility by engineering chemotaxis to an orthogonal bioinert chemical signal. Proc. Natl. Acad. Sci. USA 111, 5896–5901 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Marini, I., Siegemund, M., Hutt, M., Kontermann, R.E. & Pfizenmaier, K. Antitumor activity of a mesenchymal stem cell line stably secreting a tumor-targeted TNF-related apoptosis-inducing ligand fusion protein. Front. Immunol. 8, 536 (2017).

    Article  Google Scholar 

  12. 12

    Zhang, Z. et al. Probe-based confocal laser endomicroscopy for imaging TRAIL-expressing mesenchymal stem cells to monitor colon xenograft tumors in vivo. PLoS One 11, e0162700 (2016).

    Article  Google Scholar 

  13. 13

    Matuskova, M. et al. Combined enzyme/prodrug treatment by genetically engineered AT-MSC exerts synergy and inhibits growth of MDA-MB-231 induced lung metastases. J. Exp. Clin. Cancer Res. 34, 33 (2015).

    Article  Google Scholar 

  14. 14

    Metz, M.Z. et al. Neural stem cell-mediated delivery of irinotecan-activating carboxylesterases to glioma: implications for clinical use. Stem Cells Transl. Med. 2, 983–992 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Aboody, K.S. et al. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci. Transl. Med. 5, 184ra59 (2013).

    Article  Google Scholar 

  16. 16

    Amara, I., Touati, W., Beaune, P. & de Waziers, I. Mesenchymal stem cells as cellular vehicles for prodrug gene therapy against tumors. Biochimie 105, 4–11 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Nouri, F.S., Wang, X. & Hatefi, A. Genetically engineered theranostic mesenchymal stem cells for the evaluation of the anticancer efficacy of enzyme/prodrug systems. J. Control. Release 200, 179–187 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164, 780–791 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Roybal, K.T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Roybal, K.T. et al. Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167, 419–432 e16 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Chang, V.T. et al. Initiation of T cell signaling by CD45 segregation at 'close contacts'. Nat. Immunol. 17, 574–582 (2016).

    CAS  Article  Google Scholar 

  22. 22

    James, J.R. & Vale, R.D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487, 64–69 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Irie-Sasaki, J. et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409, 349–354 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Schukur, L., Geering, B., Charpin-El Hamri, G. & Fussenegger, M. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl. Med. 7, 318ra201 (2015).

    Article  Google Scholar 

  25. 25

    Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23, 709–717 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Kleiner, G., Marcuzzi, A., Zanin, V., Monasta, L. & Zauli, G. Cytokine levels in the serum of healthy subjects. Mediators Inflamm. 2013, 434010 (2013).

    Article  Google Scholar 

  27. 27

    Plückthun, A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 55, 489–511 (2015).

    Article  Google Scholar 

  28. 28

    Schnell, U., Cirulli, V. & Giepmans, B.N. EpCAM: structure and function in health and disease. Biochim. Biophys. Acta 1828, 1989–2001 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Kerkis, A., Hayashi, M.A., Yamane, T. & Kerkis, I. Properties of cell penetrating peptides (CPPs). IUBMB Life 58, 7–13 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Nishi, K. & Saigo, K. Cellular internalization of green fluorescent protein fused with herpes simplex virus protein VP22 via a lipid raft-mediated endocytic pathway independent of caveolae and Rho family GTPases but dependent on dynamin and Arf6. J. Biol. Chem. 282, 27503–27517 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Elliott, G. & O'Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88, 223–233 (1997).

    CAS  Article  Google Scholar 

  32. 32

    Elliott, G. & O'Hare, P. Intercellular trafficking of VP22-GFP fusion proteins. Gene Ther. 6, 149–151 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Erbs, P. et al. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene. Cancer Res. 60, 3813–3822 (2000).

    CAS  PubMed  Google Scholar 

  34. 34

    Ferrás, C. et al. Abrogation of microsatellite-instable tumors using a highly selective suicide gene/prodrug combination. Mol. Ther. 17, 1373–1380 (2009).

    Article  Google Scholar 

  35. 35

    Chinnasamy, D. et al. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J. Clin. Invest. 120, 3953–3968 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Shuai, K. & Liu, B. Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 3, 900–911 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Finbloom, D.S. & Winestock, K.D. IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J. Immunol. 155, 1079–1090 (1995).

    CAS  PubMed  Google Scholar 

  38. 38

    Chen, Z.S. & Tiwari, A.K. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 278, 3226–3245 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Wajant, H., Gerspach, J. & Pfizenmaier, K. Engineering death receptor ligands for cancer therapy. Cancer Lett. 332, 163–174 (2013).

    CAS  Article  Google Scholar 

  40. 40

    Ausländer, S., Ausländer, D. & Fussenegger, M. Synthetic biology-the synthesis of biology. Angew. Chem. Int. Ed. Engl. 56, 6396–6419 (2017).

    Article  Google Scholar 

  41. 41

    Haellman, V. & Fussenegger, M. Synthetic biology—toward therapeutic solutions. J. Mol. Biol. 428, 945–962 (2016).

    CAS  Article  Google Scholar 

  42. 42

    Simonsen, J.L. et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol. 20, 592–596 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Saxena for critical comments on the manuscript, R. Vale, J. James, B. Lindner, J. Schaefer, S. Rosenberg, A. Plückthun, L. Schukur, H. Chassin, and Addgene construct suppliers (see Supplementary Information) for providing plasmids, T. Lopes and V. Jaggin for help with FACS analysis, and E. Montani, A. Ponti, and T. Horn for help with microscopy. This work was supported by the European Research Council (ERC) advanced grant (ProNet, no. 321381) and in part by the National Centre of Competence in Research (NCCR) for Molecular Systems Engineering. R.K. was supported by a postdoctoral fellowship by the Human Frontier Science Program (HFSP; LT000094/2014-L).

Author information

Affiliations

Authors

Contributions

R.K. and M.F. designed the project, analyzed the results, and wrote the manuscript. R.K. performed experimental work. L.S. contributed to project design and plasmid generation and edited the manuscript.

Corresponding author

Correspondence to Martin Fussenegger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–2 and Supplementary Figures 1–5 (PDF 1383 kb)

Life Sciences Reporting Summary (PDF 160 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kojima, R., Scheller, L. & Fussenegger, M. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation. Nat Chem Biol 14, 42–49 (2018). https://doi.org/10.1038/nchembio.2498

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing