Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for high-affinity fluorophore binding and activation by RNA Mango

Abstract

Genetically encoded fluorescent protein tags have revolutionized proteome studies, whereas the lack of intrinsically fluorescent RNAs has hindered transcriptome exploration. Among several RNA–fluorophore complexes that potentially address this problem, RNA Mango has an exceptionally high affinity for its thiazole orange (TO)-derived fluorophore, TO1–Biotin (Kd 3 nM), and, in complex with related ligands, it is one of the most redshifted fluorescent macromolecular tags known. To elucidate how this small aptamer exhibits such properties, which make it well suited for studying low-copy cellular RNAs, we determined its 1.7-Å-resolution co-crystal structure. Unexpectedly, the entire ligand, including TO, biotin and the linker connecting them, abuts one of the near-planar faces of the three-tiered G-quadruplex. The two heterocycles of TO are held in place by two loop adenines and form a 45° angle with respect to each other. Minimizing this angle would increase quantum yield and further improve this tool for in vivo RNA visualization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of RNA Mango in complex with TO1–Biotin.
Figure 2: Structure of the G-quadruplex core of RNA Mango.
Figure 3: The duplex–quadruplex junction of RNA Mango resembles a GAAA tetraloop.
Figure 4: Structural basis of TO1–Biotin recognition by RNA Mango.
Figure 5: Structure-based analysis of the RNA Mango–TO1–Biotin complex.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Dolgosheina, E.V. et al. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9, 2412–2420 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    CAS  PubMed  Google Scholar 

  3. Grate, D. & Wilson, C. Laser-mediated, site-specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. USA 96, 6131–6136 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Babendure, J.R., Adams, S.R. & Tsien, R.Y. Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 125, 14716–14717 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Paige, J.S., Wu, K.Y. & Jaffrey, S.R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeng, S.C.Y., Chan, H.H.Y., Booy, E.P., McKenna, S.A. & Unrau, P.J. Fluorophore ligand binding and complex stabilization of the RNA Mango and RNA Spinach aptamers. RNA 22, 1884–1892 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Day, R.N. & Davidson, M.W. The Fluorescent Protein Revolution (CRC Press, 2014).

  8. Baugh, C., Grate, D. & Wilson, C. 2.8 A crystal structure of the malachite green aptamer. J. Mol. Biol. 301, 117–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Strack, R.L., Disney, M.D. & Jaffrey, S.R. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat. Methods 10, 1219–1224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, P.C. et al. Photochemical properties of Spinach and its use in selective imaging. Chem. Sci. 4, 2865–2873 (2013).

    Article  CAS  Google Scholar 

  11. Han, K.Y., Leslie, B.J., Fei, J., Zhang, J. & Ha, T. Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. J. Am. Chem. Soc. 135, 19033–19038 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Escobedo, J.O., Rusin, O., Lim, S. & Strongin, R.M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 14, 64–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Gellert, M., Lipsett, M.N. & Davies, D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA 48, 2013–2018 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burge, S., Parkinson, G.N., Hazel, P., Todd, A.K. & Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402–5415 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Warner, K.D. et al. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat. Struct. Mol. Biol. 21, 658–663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, H. et al. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nat. Chem. Biol. 10, 686–691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramesh, A., Wakeman, C.A. & Winkler, W.C. Insights into metalloregulation by M-box riboswitch RNAs via structural analysis of manganese-bound complexes. J. Mol. Biol. 407, 556–570 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fiore, J.L. & Nesbitt, D.J. An RNA folding motif: GNRA tetraloop-receptor interactions. Q. Rev. Biophys. 46, 223–264 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Coonrod, L.A., Lohman, J.R. & Berglund, J.A. Utilizing the GAAA tetraloop/receptor to facilitate crystal packing and determination of the structure of a CUG RNA helix. Biochemistry 51, 8330–8337 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Michel, F. & Westhof, E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J. Mol. Biol. 216, 585–610 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Jaeger, L., Michel, F. & Westhof, E. Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. J. Mol. Biol. 236, 1271–1276 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Costa, M. & Michel, F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 14, 1276–1285 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Howard, F.B. & Miles, H.T. Poly(inosinic acid) helices: essential chelation of alkali metal ions in the axial channel. Biochemistry 21, 6736–6745 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Williamson, J.R., Raghuraman, M.K. & Cech, T.R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59, 871–880 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Sen, D. & Gilbert, W. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 344, 410–414 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Mendez, M.A. & Szalai, V.A. Fluorescence of unmodified oligonucleotides: a tool to probe G-quadruplex DNA structure. Biopolymers 91, 841–850 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Dao, N.T., Haselsberger, R., Michel-Beyerle, M.-E. & Phan, A.T. Following G-quadruplex formation by its intrinsic fluorescence. FEBS Lett. 585, 3969–3977 (2011).

    Article  PubMed  Google Scholar 

  29. Kwok, C.K., Sherlock, M.E. & Bevilacqua, P.C. Effect of loop sequence and loop length on the intrinsic fluorescence of G-quadruplexes. Biochemistry 52, 3019–3021 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Molinaro, M. & Tinoco, I. Jr. Use of ultra stable UNCG tetraloop hairpins to fold RNA structures: thermodynamic and spectroscopic applications. Nucleic Acids Res. 23, 3056–3063 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sherlock, M.E. et al. Steady-state and time-resolved studies into the origin of the intrinsic fluorescence of G-quadruplexes. J. Phys. Chem. B 120, 5146–5158 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Phan, A.T. et al. Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat. Struct. Mol. Biol. 18, 796–804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vasilyev, N. et al. Crystal structure reveals specific recognition of a G-quadruplex RNA by a β-turn in the RGG motif of FMRP. Proc. Natl. Acad. Sci. USA 112, E5391–E5400 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nix, J., Sussman, D. & Wilson, C. The 1.3 Å crystal structure of a biotin-binding pseudoknot and the basis for RNA molecular recognition. J. Mol. Biol. 296, 1235–1244 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Hendrickson, W.A. et al. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc. Natl. Acad. Sci. USA 86, 2190–2194 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weber, P.C., Ohlendorf, D.H., Wendoloski, J.J. & Salemme, F.R. Structural origins of high-affinity biotin binding to streptavidin. Science 243, 85–88 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Nygren, J., Svanvik, N. & Kubista, M. The interactions between the fluorescent dye thiazole orange and DNA. Biopolymers 46, 39–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Carreon, J.R., Mahon, K.P. Jr. & Kelley, S.O. Thiazole orange-peptide conjugates: sensitivity of DNA binding to chemical structure. Org. Lett. 6, 517–519 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Leontis, N.B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao, H., Edwards, T.E. & Ferré-D'Amaré, A.R. Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Chem. Biol. 15, 1125–1137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D Biol. Crystallogr. 52, 30–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, 2002).

  47. Puglisi, J.D. & Tinoco, I. Jr. Absorbance melting curves of RNA. Methods Enzymol. 180, 304–325 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff at beamlines 5.0.1 and 5.0.2 of the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, and beamline 24-ID-C of the Advanced Photon Source (APS), Argonne National Laboratory, for crystallographic data collection; G. Piszczek (Biophysics Core, US National Heart, Lung and Blood Institute, NHLBI, National Institutes of Health (NIH)) for analytical ultracentrifugation and dynamic light scattering; D. Lee and R. Levine (NHLBI) for mass spectrometry; and S. Bachas, M. Chen, C. Fagan, C. Jones, T. Numata, D. Sen, L. Sjekloca, L. Truong, K. Warner and J. Zhang for discussions. This work was partly conducted at the ALS, on the on the Berkeley Center for Structural Biology beamlines, and at the APS, on the NE-CAT beamlines, which are supported by the NIH. Use of the ALS and APS was supported by the US Department of Energy. P.J.U. was supported by an NSERC (Canada) operating grant. This work was supported in part by the intramural program of the NHLBI, NIH.

Author information

Authors and Affiliations

Authors

Contributions

P.J.U. and A.R.F.-D. conceived the project; M.W.L.L. performed initial crystallization screens; S.C.Y.J. synthesized ligands; R.J.T., N.A.D. and M.W.L.L. carried out preparative biochemistry; R.J.T. performed crystallization, diffraction data collection, structure determination and refinement; R.J.T., N.A.D., S.S.S.P. and S.C.Y.J. performed structure-guided analyses; R.J.T. and A.R.F.-D. prepared the manuscript with input from all authors.

Corresponding author

Correspondence to Adrian R Ferré-D'Amaré.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–9. (PDF 3521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trachman, R., Demeshkina, N., Lau, M. et al. Structural basis for high-affinity fluorophore binding and activation by RNA Mango. Nat Chem Biol 13, 807–813 (2017). https://doi.org/10.1038/nchembio.2392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing