Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

New classes of self-cleaving ribozymes revealed by comparative genomics analysis

Abstract

Enzymes made of RNA catalyze reactions that are essential for protein synthesis and RNA processing. However, such natural ribozymes are exceedingly rare, as evidenced by the fact that the discovery rate for new classes has dropped to one per decade from about one per year during the 1980s. Indeed, only 11 distinct ribozyme classes have been experimentally validated to date. Recently, we recognized that self-cleaving ribozymes frequently associate with certain types of genes from bacteria. Herein we exploited this association to identify divergent architectures for two previously known ribozyme classes and to discover additional noncoding RNA motifs that are self-cleaving RNA candidates. We identified three new self-cleaving classes, which we named twister sister, pistol and hatchet, from this collection, suggesting that even more ribozymes remain hidden in modern cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-cleaving ribozyme candidates.
Figure 2: Activity of a bimolecular twister sister ribozyme.
Figure 3: Structure and activity of pistol self-cleaving ribozymes.
Figure 4: Structure and activity of hatchet self-cleaving ribozymes.

Similar content being viewed by others

References

  1. Benner, S.A., Ellington, A.D. & Tauer, A. Modern metabolism as a palimpsest of the RNA world. Proc. Natl. Acad. Sci. USA 86, 7054–7058 (1989).

    Article  CAS  Google Scholar 

  2. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  3. Lambowitz, A.M., Caprara, M.G., Zimmerly, S. & Perlman, P.S. Group I and group II ribozymes as RNPs: clues to the past and guides to the future. in The RNA World edn. 2, vol. 37 (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 451–483 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1999).

    Google Scholar 

  4. Ellis, J.C. & Brown, J.W. The RNase P family. RNA Biol. 6, 362–369 (2009).

    Article  CAS  Google Scholar 

  5. Ferré-D'Amaré, A.R. & Scott, W.G. Small self-cleaving ribozymes. Cold Spring Harb. Perspect. Biol. 2, a003574 (2010).

    Article  Google Scholar 

  6. Perreault, J. et al. Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput. Biol. 7, e1002031 (2011).

    Article  CAS  Google Scholar 

  7. Webb, C.-H.T. & Lupták, A. HDV-like self-cleaving ribozymes. RNA Biol. 8, 719–727 (2011).

    Article  CAS  Google Scholar 

  8. Roth, A. et al. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat. Chem. Biol. 10, 56–60 (2014).

    Article  CAS  Google Scholar 

  9. Hutchins, C.J., Rathjen, P.D., Forster, A.C. & Symons, R.H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 14, 3627–3640 (1986).

    Article  CAS  Google Scholar 

  10. Saville, B.J. & Collins, R.A. A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell 61, 685–696 (1990).

    Article  CAS  Google Scholar 

  11. Winkler, W.C., Nahvi, A., Roth, A., Collins, J.A. & Breaker, R.R. Control of gene expression by a natural metabolite–responsive ribozyme. Nature 428, 281–286 (2004).

    Article  CAS  Google Scholar 

  12. Salehi-Ashtiani, K., Lupták, A., Litovchick, A. & Szostak, J.W. A genome-wide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313, 1788–1792 (2006).

    Article  CAS  Google Scholar 

  13. Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).

    Article  CAS  Google Scholar 

  14. Johnson, L.S., Eddy, S.R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11, 431 (2010).

    Article  Google Scholar 

  15. Yao, Z., Weinberg, Z. & Ruzzo, W.L. CMfinder—a covariance model based RNA motif finding algorithm. Bioinformatics 22, 445–452 (2006).

    Article  CAS  Google Scholar 

  16. Weinberg, Z. et al. Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol. 11, R31 (2010).

    Article  Google Scholar 

  17. Pace, N.R., Thomas, B.C. & Woese, C.R. Probing RNA structure, function, and history by comparative analysis. Cold Spring Harb. Perspect. Biol. 37, 113–141 (1999).

    CAS  Google Scholar 

  18. Michel, F. & Westhof, E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J. Mol. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  19. Weinberg, Z., Perreault, J., Meyer, M.M. & Breaker, R.R. Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature 462, 656–659 (2009).

    Article  CAS  Google Scholar 

  20. Westhof, E. The amazing world of bacterial structured RNAs. Genome Biol. 11, 108 (2010).

    Article  Google Scholar 

  21. Sánchez-Luque, F.J., Lopez, M.C., Macias, F., Alonso, C. & Thomas, M.C. Identification of an hepatitis delta virus-like ribozyme at the mRNA 5′-end of the L1Tc retrotransposon from Trypanosoma cruzi. Nucleic Acids Res. 39, 8065–8077 (2011).

    Article  Google Scholar 

  22. Breaker, R.R. et al. A common speed limit for RNA-cleaving ribozymes and deoxyribozymes. RNA 9, 949–957 (2003).

    Article  CAS  Google Scholar 

  23. Liu, Y., Wilson, T.J., McPhee, S.A. & Lilley, D.M.J. Crystal structure and mechanistic investigation of the twister ribozyme. Nat. Chem. Biol. 10, 739–744 (2014).

    Article  CAS  Google Scholar 

  24. Eiler, D., Wang, J. & Steitz, T.A. Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proc. Natl. Acad. Sci. USA 111, 13028–13033 (2014).

    Article  CAS  Google Scholar 

  25. Ren, A. et al. In-line alignment and Mg2+ coordination at the cleavage site of the env22 twister ribozyme. Nat. Commun. 5, 5534–5543 (2014).

    Article  CAS  Google Scholar 

  26. Tang, J. & Breaker, R.R. Structural diversity of self-cleaving ribozymes. Proc. Natl. Acad. Sci. USA 97, 5784–5789 (2000).

    Article  CAS  Google Scholar 

  27. Salehi-Ashtiani, K. & Szostak, J.W. In vitro evolution suggests multiple origins for the hammerhead ribozyme. Nature 414, 82–84 (2001).

    Article  CAS  Google Scholar 

  28. Pruitt, K.D., Tatusova, T. & Maglott, D.R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007).

    Article  CAS  Google Scholar 

  29. Markowitz, V.M. et al. IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res. 40, D123–D129 (2012).

    Article  CAS  Google Scholar 

  30. Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).

  31. Meyer, F. et al. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008).

    Article  CAS  Google Scholar 

  32. Sun, S. et al. Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource. Nucleic Acids Res. 39, D546–D551 (2011).

    Article  CAS  Google Scholar 

  33. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. & Wheeler, D.L. GenBank. Nucleic Acids Res. 36, D25–D30 (2008).

    Article  CAS  Google Scholar 

  34. Noguchi, H., Park, J. & Takagi, T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 34, 5623–5630 (2006).

    Article  CAS  Google Scholar 

  35. Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132 (2010).

    Article  Google Scholar 

  36. Baker, J.L. et al. Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335, 233–235 (2012).

    Article  CAS  Google Scholar 

  37. Nawrocki, E.P. & Eddy, S.R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).

    Article  CAS  Google Scholar 

  38. Burge, S.W. et al. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 41, D226–D232 (2013).

    Article  CAS  Google Scholar 

  39. Lowe, T.M. & Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article  CAS  Google Scholar 

  40. Bland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209 (2007).

    Article  Google Scholar 

  41. Huang, Y., Gilna, P. & Li, W. Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 25, 1338–1340 (2009).

    Article  CAS  Google Scholar 

  42. Gardner, P.P., Barquist, L., Bateman, A., Nawrocki, E.P. & Weinberg, Z. RNIE: genome-wide prediction of bacterial intrinsic terminators. Nucleic Acids Res. 39, 5845–5852 (2011).

    Article  CAS  Google Scholar 

  43. Weinberg, Z. & Breaker, R.R. R2R—software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics 12, 3 (2011).

    Article  CAS  Google Scholar 

  44. Ruminski, D.J., Webb, C.H., Riccitelli, N.J. & Luptak, A. Processing and translation initiation of non-long terminal repeat retrotransposons by hepatitis delta virus (HDV)-like self-cleaving ribozymes. J. Biol. Chem. 286, 41286–41295 (2011).

    Article  CAS  Google Scholar 

  45. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Roth and other members of the Breaker laboratory for helpful discussions, and N. Carriero and R. Bjornson for assistance with the Yale Life Sciences High Performance Computing Center funded by the US National Institutes of Health (NIH; RR19895-02). P.B.K. was supported by an NIH Genetics Training Grant (5T32GM007499). C.E.L. was supported by the Deutsche Forschungsgemeinschaft (LU1889/1-1). This work was also supported by an NIH grant (GM022778) to R.R.B. and by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. conducted all bioinformatics searches and created the RNA consensus models. Validation studies were conducted for twister sister by P.B.K. and T.H.C., for pistol by K.A.H., for hatchet by S.L., for hammerhead by P.B.K. and for HDV by P.B.K. and S.L. P.B.K., T.H.C. and C.E.L. screened additional noncleaving RNAs. R.R.B. worked with all authors to plan experiments, interpret data and write the manuscript.

Corresponding author

Correspondence to Ronald R Breaker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–5 and Supplementary Figures 1–13 (PDF 2888 kb)

Supplementary Data Set 1

Printable alignments, genomic contexts and taxonomy of self-cleaving ribozyme candidates (PDF 6312 kb)

Supplementary Data Set 2

Machine-readable alignments of self-cleaving ribozyme candidates (ZIP 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinberg, Z., Kim, P., Chen, T. et al. New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Nat Chem Biol 11, 606–610 (2015). https://doi.org/10.1038/nchembio.1846

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing