Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation


PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases through clinical genetics and gene disruption in mice. New selective PAD4 inhibitors binding a calcium-deficient form of the PAD4 enzyme have validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation for, to our knowledge, the first time. The therapeutic potential of PAD4 inhibitors can now be explored.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure and biochemical characterization of PAD4 inhibitors.
Figure 2: GSK199 binds to a reordered PAD4 active site.
Figure 3: Inhibition of mouse NETs.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank


  1. 1

    Jones, J.E., Causey, C.P., Knuckley, B., Slack-Noyes, J.L. & Thompson, P.R. Curr. Opin. Drug Discov. Devel. 12, 616–627 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Brinkmann, V. et al. Science 303, 1532–1535 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Ohlsson, S.M. et al. Clin. Exp. Immunol. 176, 363–372 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Hakkim, A. et al. Proc. Natl. Acad. Sci. USA 107, 9813–9818 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Villanueva, E. et al. J. Immunol. 187, 538–552 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Martinod, K. et al. Proc. Natl. Acad. Sci. USA 110, 8674–8679 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Clark, S.R. et al. Nat. Med. 13, 463–469 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Li, P. et al. J. Exp. Med. 207, 1853–1862 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Knuckley, B. et al. Biochemistry 49, 4852–4863 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Luo, Y. et al. Biochemistry 45, 11727–11736 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Causey, C.P. et al. J. Med. Chem. 54, 6919–6935 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Jones, J.E. et al. ACS Chem. Biol. 7, 160–165 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Wang, Y. et al. J. Biol. Chem. 287, 25941–25953 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Clark, M.A. et al. Nat. Chem. Biol. 5, 647–654 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Luo, Y., Knuckley, B., Lee, Y.H., Stallcup, M.R. & Thompson, P.R. J. Am. Chem. Soc. 128, 1092–1093 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Arita, K. et al. Nat. Struct. Mol. Biol. 11, 777–783 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Linsky, T. & Fast, W. Biochim. Biophys. Acta 1804, 1943–1953 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Humm, A., Fritsche, E., Steinbacher, S. & Huber, R. EMBO J. 16, 3373–3385 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Hakkim, A. et al. Nat. Chem. Biol. 7, 75–77 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Li, P. et al. Mol. Cell. Biol. 28, 4745–4758 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Li, P. et al. Oncogene 29, 3153–3162 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Slack, J.L., Jones, L.E. Jr., Bhatia, M.M. & Thompson, P.R. Biochemistry 50, 3997–4010 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Kearney, P.L. et al. Biochemistry 44, 10570–10582 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Darrah, E. et al. Sci. Transl. Med. 5, 186ra65 (2013).

    Article  Google Scholar 

  25. 25

    Lewallen, D.M. et al. ACS Chem. Biol. 9, 913–921 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Sugawara, K. & Oyama, F. J. Biochem. 89, 771–774 (1981).

    CAS  Article  Google Scholar 

  27. 27

    Young, R.J., Green, D.V., Luscombe, C.N. & Hill, A.P. Drug Discov. Today 16, 822–830 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Murshudov, G.N. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Smart, O.S. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 368–380 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Demers, M. et al. Proc. Natl. Acad. Sci. USA 109, 13076–13081 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Bantscheff, M. et al. Nat. Biotechnol. 25, 1035–1044 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Bouwmeester, T. et al. Nat. Cell Biol. 6, 97–105 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Fuchs, T.A. et al. J. Cell Biol. 176, 231–241 (2007).

    CAS  Article  Google Scholar 

Download references


This work was supported in part by US National Institutes of Health grants GM079357 (to P.R.T.) and R01 HL102101 (to D.D.W.). We thank the following colleagues for their medicinal and synthetic chemistry contributions to this manuscript: D. Amans, H. Diallo, C. Douault, N. Garton, K. Jones, J. Renaux, T. Shipley, A. Walker, B. Watson and C. Wellaway. We also gratefully acknowledge S. Ready for diligently preparing and quantifying S. aureus for neutrophil studies. For the chemoproteomics data, we would like to thank M. Boesche and Cellzome's tissue culture and target validation teams for technical expertise and M. Bantscheff for stimulating discussion. We thank M. Neu and P. Homes for assistance for structural studies and B. Nolte for advice on crystallography.

Author information




H.D.L., J.L. and J.E.C. led the project, designed the research, interpreted data and drafted the manuscript with input from all authors. S.J.A., M.D.B., M.C., R.J.S. and D.M.W. synthesized or designed key compounds. K.E.L., C.E.R. and G.Y. performed and analyzed the screening, which identified the PAD4 inhibitors. K.L.B., R.P.B., P.D.C., K.L. and D.J.S. designed the biochemical assays and deduced the mechanism of action of compounds. D.E., G.J. and G.D. generated chemoproteomic data. Y.H.C., R.P.D., D.E., C.M., K.M., C.P. and M.R. performed cellular assays. For structures, O.P. purified protein; J.T. crystallized protein, soaked crystals and collected data; B.D.B. refined structures; and P.T. performed sequence and structural analysis. C.-w.C. D.D.W., P.R.T., R.K.P. and D.M.W. guided aspects of this work. C.M., S.J.A., C.-w.C. and H.D.L. also contributed invaluably to the revision and formatting of the final manuscript.

Corresponding author

Correspondence to Huw D Lewis.

Ethics declarations

Competing interests

P.R.T. is a co-founder and consultant to Padlock Therapeutics. The majority of the other authors are pharmaceutical industry employees and shareholders.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–19 and Supplementary Tables 1–6. (PDF 9590 kb)

Supplementary Note

General Procedures (PDF 1514 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lewis, H., Liddle, J., Coote, J. et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol 11, 189–191 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing