Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Bacteriophages use an expanded genetic code on evolutionary paths to higher fitness

Abstract

Bioengineering advances have made it possible to fundamentally alter the genetic codes of organisms. However, the evolutionary consequences of expanding an organism's genetic code with a noncanonical amino acid are poorly understood. Here we show that bacteriophages evolved on a host that incorporates 3-iodotyrosine at the amber stop codon acquire neutral and beneficial mutations to this new amino acid in their proteins, demonstrating that an expanded genetic code increases evolvability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome evolution of a bacterial virus with a newly expanded genetic code.
Figure 2: Beneficial amber mutation in the T7 holin II protein.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Crick, F.H.C. J. Mol. Biol. 38, 367–379 (1968).

    Article  CAS  Google Scholar 

  2. Knight, R.D., Freeland, S.J. & Landweber, L.F. Nat. Rev. Genet. 2, 49–58 (2001).

    Article  CAS  Google Scholar 

  3. Ambrogelly, A., Palioura, S. & Söll, D. Nat. Chem. Biol. 3, 29–35 (2007).

    Article  CAS  Google Scholar 

  4. Freeland, S.J. & Hurst, L.D. J. Mol. Evol. 47, 238–248 (1998).

    Article  CAS  Google Scholar 

  5. Itzkovitz, S. & Alon, U. Genome Res. 17, 405–412 (2007).

    Article  CAS  Google Scholar 

  6. Liu, C.C. & Schultz, P.G. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  Google Scholar 

  7. Davis, L. & Chin, J.W. Nat. Rev. Mol. Cell Biol. 13, 168–182 (2012).

    Article  CAS  Google Scholar 

  8. Brustad, E.M. & Arnold, F.H. Curr. Opin. Chem. Biol. 15, 201–210 (2011).

    Article  CAS  Google Scholar 

  9. Wang, K., Neumann, H., Peak-Chew, S.Y. & Chin, J.W. Nat. Biotechnol. 25, 770–777 (2007).

    Article  Google Scholar 

  10. Bacher, J.M., Hughes, R.A., Tze-Fei Wong, J. & Ellington, A.D. Trends Ecol. Evol. 19, 69–75 (2004).

    Article  Google Scholar 

  11. Ohtake, K. et al. J. Bacteriol. 194, 2606–2613 (2012).

    Article  CAS  Google Scholar 

  12. Dunn, J.J. & Studier, F.W. J. Mol. Biol. 166, 477–535 (1983).

    Article  CAS  Google Scholar 

  13. Molineux, I.J. The Bacteriophages 277–301 (Oxford UP, 2006).

  14. Bull, J.J. et al. Genetics 147, 1497–1507 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bull, J.J., Badgett, M.R., Rokyta, D. & Molineux, I.J. J. Mol. Evol. 57, 241–248 (2003).

    Article  CAS  Google Scholar 

  16. Chan, L.Y., Kosuri, S. & Endy, D. Mol. Syst. Biol. 1, 2005.0018 (2005).

    Article  Google Scholar 

  17. Sakamoto, K. et al. Structure 17, 335–344 (2009).

    Article  CAS  Google Scholar 

  18. Mukai, T. et al. Biochem. Biophys. Res. Commun. 411, 757–761 (2011).

    Article  CAS  Google Scholar 

  19. Tabor, S. & Richardson, C.C. J. Biol. Chem. 264, 6447–6458 (1989).

    CAS  PubMed  Google Scholar 

  20. Cheetham, G.M. & Steitz, T.A. Science 286, 2305–2309 (1999).

    Article  CAS  Google Scholar 

  21. Wang, I.N., Smith, D.L. & Young, R. Annu. Rev. Microbiol. 54, 799–825 (2000).

    Article  CAS  Google Scholar 

  22. Wang, N., Dykhuizen, D. & Slobodkin, L. Evol. Ecol. 10, 545–558 (1996).

    Article  Google Scholar 

  23. Heineman, R.H., Bull, J.J. & Molineux, I.J. Mol. Biol. Evol. 26, 1289–1298 (2009).

    Article  CAS  Google Scholar 

  24. Lajoie, M.J. et al. Science 342, 357–360 (2013).

    Article  CAS  Google Scholar 

  25. Moe-Behrens, G.H.G., Davis, R. & Haynes, K.A. Front. Microbiol. 4, 5 (2013).

    Article  Google Scholar 

  26. Dodt, M., Roehr, J., Ahmed, R. & Dieterich, C. Biology 1, 895–905 (2012).

    Article  Google Scholar 

  27. Gfeller, D., Michielin, O. & Zoete, V. Nucleic Acids Res. 41, D327–D332 (2013).

    Article  CAS  Google Scholar 

  28. Young, D.D., Jockush, S., Turro, N.J. & Schultz, P.G. Bioorg. Med. Chem. Lett. 21, 7502–7504 (2011).

    Article  CAS  Google Scholar 

  29. Shevchenko, A., Tomas, H., Havlis, J. & Olsen, J. Nat. Protoc. 1, 2856–2860 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Bull, I. Molineux, R. Hughes, C. Barnhart, D. Deatherage, R. Alnahhas, M. Schmerer, A. Miklos, A. Meyer and A. Maranhão (all at the University of Texas at Austin) for plasmids, strains, advice and technical assistance. The RF0 IodoY strain was provided by RIKEN and by the Targeted Proteins Research Program, the Ministry of Education, Culture, Sports, Science and Technology, Japan. We acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources. This research was supported by the US National Institutes of Health (NIH) (R00-GM087550 to J.E.B.), the US National Science Foundation (NSF) BEACON Center for the Study of Evolution in Action (DBI-0939454 to J.E.B.), the US Army Research Office (W911NF-12-1-0390 to J.E.B. and E.M.M.), the US National Security Science and Engineering Faculty (FA9550-10-1-01-69 to A.D.E.), the US Defense Advanced Research Project Agency (HR-0011-12-C-0066 to A.D.E.) and the NSF (MCB-0943383 to A.D.E.). E.M.M. also acknowledges funding from the NIH, the NSF, the Cancer Prevention Research Institute of Texas and the Welch Foundation (F1515).

Author information

Authors and Affiliations

Authors

Contributions

M.J.H., J.W.E., J.E.B. and A.D.E. conceived the study. M.J.H. performed evolution experiments. J.E.B. and M.J.H. analyzed sequencing data. M.J.H. and J.W.E. created RF0 Tyr and characterized phage lysis times. D.R.B and E.M.M. analyzed proteomics data. J.E.B. performed statistical analyses. J.E.B., M.J.H., J.W.E. and D.R.B. created figures and wrote the manuscript. All of the authors designed experiments and edited the manuscript.

Corresponding author

Correspondence to Jeffrey E Barrick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–10 and Supplementary Tables 1 and 2. (PDF 5289 kb)

Supplementary Data Set 1

Mutations in bacteriophage samples. (XLSX 99 kb)

Supplementary Data Set 2

Informative peptide-spectrum matches. (XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammerling, M., Ellefson, J., Boutz, D. et al. Bacteriophages use an expanded genetic code on evolutionary paths to higher fitness. Nat Chem Biol 10, 178–180 (2014). https://doi.org/10.1038/nchembio.1450

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1450

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing