Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Side pockets provide the basis for a new mechanism of Kv channel–specific inhibition

Abstract

Most known small-molecule inhibitors of voltage-gated ion channels have poor subtype specificity because they interact with a highly conserved binding site in the central cavity. Using alanine-scanning mutagenesis, electrophysiological recordings and molecular modeling, we have identified a new drug-binding site in Kv1.x channels. We report that Psora-4 can discriminate between related Kv channel subtypes because, in addition to binding the central pore cavity, it binds a second, less conserved site located in side pockets formed by the backsides of S5 and S6, the S4-S5 linker, part of the voltage sensor and the pore helix. Simultaneous drug occupation of both binding sites results in an extremely stable nonconducting state that confers high affinity, cooperativity, use-dependence and selectivity to Psora-4 inhibition of Kv1.x channels. This new mechanism of inhibition represents a molecular basis for the development of a new class of allosteric and selective voltage-gated channel inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of pore-facing and non–pore-facing amino acids of the Psora-4 binding site.
Figure 2: Psora-4 binding site in the central cavity and side pockets.
Figure 3: Introducing Psora-4 affinity into Kv2.1 channels by creating a Kv1-like side pocket.
Figure 4: Psora-4 in the side pocket interacts with the pore helix.
Figure 5: Psora-4 blocking mechanism.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Swiss-Prot

References

  1. Wulff, H., Castle, N.A. & Pardo, L.A. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov. 8, 982–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hockerman, G.H., Dilmac, N., Scheuer, T. & Catterall, W.A. Molecular determinants of diltiazem block in domains IIIS6 and IVS6 of L-type Ca2+ channels. Mol. Pharmacol. 58, 1264–1270 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W.A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ragsdale, D.S., McPhee, J.C., Scheuer, T. & Catterall, W.A. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc. Natl. Acad. Sci. USA 93, 9270–9275 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ragsdale, D.S., McPhee, J.C., Scheuer, T. & Catterall, W.A. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science 265, 1724–1728 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Decher, N. et al. Molecular basis for Kv1.5 channel block: conservation of drug binding sites among voltage-gated K+ channels. J. Biol. Chem. 279, 394–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Mitcheson, J.S., Chen, J., Lin, M., Culberson, C. & Sanguinetti, M.C. A structural basis for drug-induced long QT syndrome. Proc. Natl. Acad. Sci. USA 97, 12329–12333 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seebohm, G. et al. Molecular determinants of KCNQ1 channel block by a benzodiazepine. Mol. Pharmacol. 64, 70–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Hanner, M. et al. Binding of correolide to the Kv1.3 potassium channel: characterization of the binding domain by site-directed mutagenesis. Biochemistry 40, 11687–11697 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. MacKinnon, R., Heginbotham, L. & Abramson, T. Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor. Neuron 5, 767–771 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Swartz, K.J. & MacKinnon, R. Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18, 675–682 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Vennekamp, J. et al. Kv1.3-blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. Mol. Pharmacol. 65, 1364–1374 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Zimin, P.I. et al. Potassium channel block by a tripartite complex of two cationophilic ligands and a potassium ion. Mol. Pharmacol. 78, 588–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Decher, N. et al. Structural determinants of Kvβ1.3-induced channel inactivation: a hairpin modulated by PIP2 . EMBO J. 27, 3164–3174 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Decher, N., Kumar, P., Gonzalez, T., Renigunta, V. & Sanguinetti, M.C. Structural basis for competition between drug binding and Kvβ1.3 accessory subunit-induced N-type inactivation of Kv1.5 channels. Mol. Pharmacol. 68, 995–1005 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Ledwell, J.L. & Aldrich, R.W. Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation. J. Gen. Physiol. 113, 389–414 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soler-Llavina, G.J., Chang, T.H. & Swartz, K.J. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker Kv channel. Neuron 52, 623–634 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Armstrong, C.M. & Hille, B. The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. J. Gen. Physiol. 59, 388–400 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baukrowitz, T. & Yellen, G. Two functionally distinct subsites for the binding of internal blockers to the pore of voltage-activated K+ channels. Proc. Natl. Acad. Sci. USA 93, 13357–13361 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huber, I. et al. Conserved Ca2+-antagonist-binding properties and putative folding structure of a recombinant high-affinity dihydropyridine-binding domain. Biochem. J. 347, 829–836 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nau, C. & Wang, G.K. Interactions of local anesthetics with voltage-gated Na+ channels. J. Membr. Biol. 201, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Striessnig, J. et al. Structural basis of drug binding to L Ca2+ channels. Trends Pharmacol. Sci. 19, 108–115 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Šali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  PubMed  Google Scholar 

  24. Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goodsell, D.S., Morris, G.M. & Olson, A.J. Automated docking of flexible ligands: applications of AutoDock. J. Mol. Recognit. 9, 1–5 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Åqvist, J. & Luzhkov, V. Ion permeation mechanism of the potassium channel. Nature 404, 881–884 (2000).

    Article  PubMed  Google Scholar 

  27. Zhou, Y., Morais-Cabral, J.H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Kleywegt, G.J. & Jones, T.A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. D Biol. Crystallogr. 50, 178–185 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. van Aalten, D.M. et al. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J. Comput. Aided Mol. Des. 10, 255–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Scott, W.R.P. et al. The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103, 3596–3607 (1999).

    Article  CAS  Google Scholar 

  32. Parrinello, M. & Rahman, A. Polymorphic transitions in single-crystals—a new molecular-dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  CAS  Google Scholar 

  33. Hermans, J., Berendsen, H.J.C., Vangunsteren, W.F. & Postma, J.P.M. A consistent empirical potential for water-protein interactions. Biopolymers 23, 1513–1518 (1984).

    Article  CAS  Google Scholar 

  34. Hess, B., Bekker, H., Berendsen, H.J.C. & Fraaije, J.G.E.M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article  CAS  Google Scholar 

  35. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Stefani, E. & Bezanilla, F. Cut-open oocyte voltage-clamp technique. Methods Enzymol. 293, 300–318 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Armstrong, C.M. & Bezanilla, F. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70, 567–590 (1977).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft grant DE1482-3/2 to N.D. and by the P.E. Kempkes Stiftung 01/2011 to S.R. and S.M. M.S.P.S. is supported by the Wellcome Trust. M.C.S. was supported by US National Institutes of Health (NIH)–NIH Heart, Lung, and Blood Institute grant HL055236. S.M. was supported by the Studienstiftung des Deutschen Volkes e.V.

Author information

Authors and Affiliations

Authors

Contributions

N.D. conceived the study. S.M. performed the majority of the experiments. P.J.S. and M.S.P.S. performed the ligand dockings and MDSs. M.R., E.N.-A. and T.B. performed the inside-out macropatch clamp experiments. J.L.A. and M.C.S. performed the cut-open oocyte Vaseline gap measurements. S.R. and S.M. acquired funding. N.D., M.C.S., T.B., S.R., K.S. and S.M. wrote the manuscript.

Corresponding author

Correspondence to Niels Decher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 1096 kb)

Supplementary Video 1

Linear interpolation between open (KvChim) and closed (MlotiK) Kv1.5 models (MOV 32029 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzian, S., Stansfeld, P., Rapedius, M. et al. Side pockets provide the basis for a new mechanism of Kv channel–specific inhibition. Nat Chem Biol 9, 507–513 (2013). https://doi.org/10.1038/nchembio.1271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1271

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research