Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst

Abstract

Although considerable progress has been made in carbon dioxide (CO2) hydrogenation to various C1 chemicals, it is still a great challenge to synthesize value-added products with two or more carbons, such as gasoline, directly from CO2 because of the extreme inertness of CO2 and a high C–C coupling barrier. Here we present a bifunctional catalyst composed of reducible indium oxides (In2O3) and zeolites that yields a high selectivity to gasoline-range hydrocarbons (78.6%) with a very low methane selectivity (1%). The oxygen vacancies on the In2O3 surfaces activate CO2 and hydrogen to form methanol, and C−C coupling subsequently occurs inside zeolite pores to produce gasoline-range hydrocarbons with a high octane number. The proximity of these two components plays a crucial role in suppressing the undesired reverse water gas shift reaction and giving a high selectivity for gasoline-range hydrocarbons. Moreover, the pellet catalyst exhibits a much better performance during an industry-relevant test, which suggests promising prospects for industrial applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Catalytic performance over various catalysts and the morphology of the In2O3/HZSM-5 bifunctional catalyst.
Figure 2: Molecular-level mechanism for CO2 hydrogenation into hydrocarbons.
Figure 3: Influence of the integration manner of the active components (In2O3/HZSM-5 mass ratio = 2:1) on catalytic behaviours under the same conditions.
Figure 4: Catalytic performance of the composite catalyst presented in Fig. 3d.
Figure 5: Catalytic performance with tail-gas recycling and as a function of CO concentration in the feed.

Similar content being viewed by others

References

  1. Kothandaraman, J. et al. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without PH control or solvent change. ChemSusChem 8, 1442–1451 (2015).

    Article  CAS  Google Scholar 

  2. Aresta, M., Dibenedetto, A. & Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2 . Chem. Rev. 114, 1709–1742 (2014).

    Article  CAS  Google Scholar 

  3. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  Google Scholar 

  4. Li, C.-S. et al. High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis. Nat. Commun. 6, 6538 (2015).

    Article  Google Scholar 

  5. Graciani, J. et al. Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO2 . Science 345, 546–550 (2014).

    Article  CAS  Google Scholar 

  6. Scirè, S., Crisafulli, C., Maggiore, R., Minicò, S. & Galvagno, S. Influence of the support on CO2 methanation over Ru catalysts: an FT-IR study. Catal. Lett. 51, 41–45 (1998).

    Article  Google Scholar 

  7. Moret, S., Dyson, P. J. & Laurenczy, G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat. Commun. 5, 4017 (2014).

    Article  CAS  Google Scholar 

  8. Studt, F. et al. Discovery of a Ni–Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014).

    Article  CAS  Google Scholar 

  9. Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    Article  CAS  Google Scholar 

  10. Yin, Z. et al. Highly selective palladium–copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy 27, 35–43 (2016).

    Article  CAS  Google Scholar 

  11. Dixneuf, P. H. Bifunctional catalysis: a bridge from CO2 to methanol. Nat. Chem. 3, 578–579 (2011).

    Article  CAS  Google Scholar 

  12. Sakakura, T., Choi, J.-C. & Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 107, 2365–2387 (2007).

    Article  CAS  Google Scholar 

  13. Montoya, J. H., Peterson, A. A. & Nørskov, J. K. Insights into C–C coupling in CO2 electroreduction on copper electrodes. ChemCatChem 5, 737–742 (2013).

    Article  CAS  Google Scholar 

  14. Aresta, M., Dibenedetto, A. & Angelini, A. The changing paradigm in CO2 utilization. J. CO2 Util. 3–4, 65–73 (2013).

    Article  Google Scholar 

  15. Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009).

    Article  CAS  Google Scholar 

  16. Rodemerck, U. et al. Catalyst development for CO2 hydrogenation to fuels. ChemCatChem 5, 1948–1955 (2013).

    Article  CAS  Google Scholar 

  17. Dorner, R. W., Hardy, D. R., Williams, F. W. & Willauer, H. D. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons. Energy Environ. Sci. 3, 884–890 (2010).

    Article  CAS  Google Scholar 

  18. Ye, J. Y., Liu, C. J., Mei, D. H. & Ge, Q. F. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study. ACS Catal. 3, 1296–1306 (2013).

    Article  CAS  Google Scholar 

  19. Martin, O. et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew. Chem. Int. Ed. 55, 6261–6265 (2016).

    Article  CAS  Google Scholar 

  20. Kim, J., Choi, M. & Ryoo, R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. J. Catal. 269, 219–228 (2010).

    Article  CAS  Google Scholar 

  21. Liu, Z. Y. et al. Solvent-free synthesis of c-axis oriented ZSM-5 crystals with enhanced methanol to gasoline catalytic activity. ChemCatChem 8, 3317–3322 (2016).

    Article  CAS  Google Scholar 

  22. Olsbye, U. et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. 51, 5810–5831 (2012).

    Article  CAS  Google Scholar 

  23. Olsbye, U., Bjørgen, M., Svelle, S., Lillerud, K.-P. & Kolboe, S. Mechanistic insight into the methanol-to-hydrocarbons reaction. Catal. Today 106, 108–111 (2005).

    Article  CAS  Google Scholar 

  24. Van Speybroeck, V. et al. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 44, 7044–7111 (2015).

    Article  CAS  Google Scholar 

  25. Khodakov, A. Y., Chu, W. & Fongarland, P. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 1692–1744 (2007).

    Article  CAS  Google Scholar 

  26. Van der Laan, G. P. & & Beenackers, A. A. C. M. Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal. Rev. 41, 255–318 (1999).

    Article  CAS  Google Scholar 

  27. Xiang, Y. Z. & Kruse, N. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins. Nat. Commun. 7, 13058 (2016).

    Article  CAS  Google Scholar 

  28. Behrens, M. et al. Performance improvement of nanocatalysts by promoter-induced defects in the support material: methanol synthesis over Cu/ZnO:Al. J. Am. Chem. Soc. 135, 6061–6068 (2013).

    Article  CAS  Google Scholar 

  29. Gao, P. et al. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. J. Catal. 298, 51–60 (2013).

    Article  CAS  Google Scholar 

  30. Fujiwara, M., Kieffer, R., Ando, H. & Souma, Y. Development of composite catalysts made of Cu–Zn–Cr oxide zeolite for the hydrogenation of carbon-dioxide. Appl. Catal. A 121, 113–124 (1995).

    Article  CAS  Google Scholar 

  31. Jeon, J.-K., Jeong, K.-E., Park, Y.-K. & Ihm, S.-K. Selective synthesis of C3–C4 hydrocarbons through carbon-dioxide hydrogenation on hybrid catalysts composed of a methanol synthesis catalyst and SAPO. Appl. Catal. A 124, 91–106 (1995).

    Article  CAS  Google Scholar 

  32. Fujiwara, M., Satake, T., Shiokawa, K. & Sakurai, H. CO2 hydrogenation for C2+ hydrocarbon synthesis over composite catalyst using surface modified HB zeolite. Appl. Catal. B 179, 37–43 (2015).

    Article  CAS  Google Scholar 

  33. Inui, T., Kitagawa, K., Takeguchi, T., Hagiwara, T. & Makino, Y. Hydrogenation of carbon-dioxide to C1–C7 hydrocarbons via methanol on composite catalysts. Appl. Catal. A 94, 31–44 (1993).

    Article  CAS  Google Scholar 

  34. Martin, O. et al. Zinc-rich copper catalysts promoted by gold for methanol synthesis. ACS Catal. 5, 5607–5616 (2015).

    Article  CAS  Google Scholar 

  35. Jiao, F. et al. Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).

    Article  CAS  Google Scholar 

  36. Cheng, K. et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling. Angew. Chem. Int. Ed. 55, 4725–4728 (2016).

    Article  CAS  Google Scholar 

  37. Zecevic, J., Vanbutsele, G., de Jong, K. P. & Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528, 245–254 (2015).

    Article  CAS  Google Scholar 

  38. Fu, X. Z., Clark, L. A., Zeltner, W. A. & Anderson, M. A. Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. J. Photochem. Photobiol. A 97, 181–186 (1996).

    Article  CAS  Google Scholar 

  39. Lloyd, L. Handbook of Industrial Catalysts (Springer, 2007).

    Google Scholar 

  40. Subramani, V. & Gangwal, S. K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuels 22, 814–839 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21503260, 21573271, 91545112 and 11227902), the Shanghai Municipal Science and Technology Commission, China (14DZ1207602, 16DZ1206900 and 15DZ1170500), the Ministry of Science and Technology of China (2016YFA0202802) and the Chinese Academy of Sciences (QYZDB-SSW-SLH035). We thank Z. Liu and Y. Han for the assistance with in situ NAP–XPS, located at the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

P.G., L.Z. and Y.S. conceived the project, analysed the data and wrote the paper. P.G., S.L. and W.W. drafted the manuscript. P.G. and S.D. prepared the samples. S.L. performed DFT calculations. Z.L. and H.W. studied the effect of the integration manner. X.B., M.Q. and C.Y. performed the catalytic evaluation. S.D., Z.L., X.B. and J.C. characterized the samples. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Liangshu Zhong or Yuhan Sun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Li, S., Bu, X. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chem 9, 1019–1024 (2017). https://doi.org/10.1038/nchem.2794

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing