Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly selective hydrogenation of CO2 to propane over GaZrOx/H-SSZ-13 composite

Abstract

Selective hydrogenation of CO2 into value-added hydrocarbons, particularly single products, is of great interest. However, this is a challenge because of the simultaneous occurrence of numerous competing elementary reactions. Here a GaZrOx/H-SSZ-13 composite is developed, which shows propane selectivity in hydrocarbons of 79.5%, along with butane selectivity of 9.9% and CO selectivity of 31.8%, at CO2 conversion of 43.4%. Such catalytic performance can be well maintained within 500 h. Incorporation of proper amounts of Ga into ZrO2 promotes methanol formation due to generation of high concentrations of surface oxygen vacancies with moderate CO2 adsorption strength. The large number of strong-acid sites of H-SSZ-13 seriously restricts conversion of generated methanol into aromatics at high H2 pressure, suppressing the aromatics-based cycle and favouring the alkene-based cycle instead. Accordingly, far more propene and butene are obtained than ethene, although they are rapidly hydrogenated to corresponding alkanes on the strong-acid sites of H-SSZ-13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic performance for CO2 conversion.
Fig. 2: Effect of gas ratios and time on stream.
Fig. 3: In situ infrared characterization.
Fig. 4: Isotope-labelled experiment.
Fig. 5: Investigation of residual species on various catalysts.
Fig. 6: Catalytic performance for methanol conversion.
Fig. 7: DFT calculation.
Fig. 8: Reaction mechanism.

Similar content being viewed by others

Data availability

Data used to plot the figures are provided with the paper and the Supplementary Information, and are also available in the ScienceDB repository at https://doi.org/10.57760/sciencedb.02988 or available from the author upon reasonable request.

References

  1. Centi, G., Quadrelli, E. A. & Perathoner, S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 6, 1711–1731 (2013).

    Article  CAS  Google Scholar 

  2. Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

    Article  CAS  Google Scholar 

  3. Porosoff, M. D., Yan, B. & Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ. Sci. 9, 62–73 (2016).

    Article  CAS  Google Scholar 

  4. Liu, Y. T., Deng, D. H. & Bao, X. H. Catalysis for selected C1 chemistry. Chem. 6, 2497–2514 (2020).

    Article  CAS  Google Scholar 

  5. Alvarez, A. et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 117, 9804–9838 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, W., Wang, S., Ma, X. & Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Zhong, J. W. et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 49, 1385–1413 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Bao, J., Yang, G. H., Yoneyama, Y. & Tsubaki, N. Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions. ACS Catal. 9, 3026–3053 (2019).

    Article  CAS  Google Scholar 

  9. Ye, R. P. et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 10, 5698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Studt, F. et al. Discovery of a Ni–Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, C. Y. et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nat. Commun. 11, 5767 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu, Y. F. et al. Copper–zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol. Nat. Commun. 11, 5849 (2020).

  13. Wang, L. X. et al. Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts. Nat. Commun. 11, 1033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He, M. Y., Sun, Y. H. & Han, B. X. Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 52, 9620–9633 (2013).

    Article  CAS  Google Scholar 

  15. von der Assen, N., Voll, P., Peters, M. & Bardow, A. Life cycle assessment of CO2 capture and utilization: a tutorial review. Chem. Soc. Rev. 43, 7982–7994 (2014).

    Article  PubMed  Google Scholar 

  16. Gutterod, E. S. et al. Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: deciphering the role of the metal−organic framework. J. Am. Chem. Soc. 142, 999–1009 (2020).

    Article  PubMed  Google Scholar 

  17. Frei, M. S. et al. Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol. ACS Catal. 10, 1133–1145 (2020).

    Article  CAS  Google Scholar 

  18. Jiang, X., Nie, X. W., Guo, X. W., Song, C. S. & Chen, J. G. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 120, 7984–8034 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Xie, S. J. et al. Photocatalytic and electrocatalytic transformations of C1 molecules involving C–C coupling. Energy Environ. Sci. 14, 37–89 (2021).

    Article  CAS  Google Scholar 

  20. Torres Galvis, H. M. et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335, 835–838 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Wei, J. et al. Directly converting CO2 into a gasoline fuel. Nat. Commun. 8, 16170 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramirez, A. et al. Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics. ACS Catal. 9, 6320–6334 (2019).

    Article  CAS  Google Scholar 

  23. Xu, Y. et al. Highly selective olefin production from CO2 hydrogenation on iron catalysts: a subtle synergy between manganese and sodium additives. Angew. Chem. Int. Ed. 59, 21736–21744 (2020).

    Article  Google Scholar 

  24. Wang, C. T. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 141, 8482–8488 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Paalanen, P. P., Van Vreeswijk, S. H. & Weckhuysen, B. M. Combined in situ X‑ray powder diffractometry/Raman spectroscopy of iron carbide and carbon species evolution in Fe(–Na–S)/α-Al2O3 catalysts during Fischer–Tropsch synthesis. ACS Catal. 10, 9837–9855 (2020).

  26. Li, J. et al. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 1, 787–793 (2018).

    Article  CAS  Google Scholar 

  27. Torres Galvis, H. M. & de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal. 3, 2130–2149 (2013).

    Article  CAS  Google Scholar 

  28. Zhou, W. et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 48, 3193–3228 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Jiao, F. et al. Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Cheng, K. et al. Direct and highly selective conversion of synthesis gas to lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling. Angew. Chem. Int. Ed. 55, 4725–4728 (2016).

  31. Wang, S. et al. Selective conversion of CO2 into propene and butene. Chem 6, 3344–3363 (2020).

    Article  CAS  Google Scholar 

  32. Ni, Y. M. et al. Selective conversion of CO2 and H2 into aromatics. Nat. Commun. 9, 3457 (2019).

    Article  Google Scholar 

  33. Wei, J., Yao, R. W., Han, Y., Ge, Q. J. & Sun, J. Towards the development of the emerging process of CO2 heterogeneous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem. Soc. Rev. 50, 10764–10805 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Z. L. et al. Highly selective conversion of carbon dioxide to lower olefins. ACS Catal. 7, 8544–8548 (2017).

    Article  CAS  Google Scholar 

  35. Liu, X. L. et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catal. 10, 8303–8314 (2020).

    Article  CAS  Google Scholar 

  36. Gao, P. et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis. ACS Catal. 8, 571–578 (2018).

    Article  CAS  Google Scholar 

  37. Chen, Y. X. et al. C−C bond formation in syngas conversion over zinc sites grafted on ZSM-5 zeolite. Angew. Chem. Int. Ed. 59, 6529–6534 (2020).

    Article  CAS  Google Scholar 

  38. Jiao, F. et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate. Angew. Chem. Int. Ed. 57, 4692–4696 (2018).

    Article  CAS  Google Scholar 

  39. Tahir Arslan, M. et al. Single-step conversion of H2‑deficient syngas into high yield of tetramethylbenzene. ACS Catal. 9, 2203–2212 (2019).

    Article  Google Scholar 

  40. Wang, S. et al. Highly effective conversion of CO2 into light olefins abundant in ethene. Chem 8, 1376–1394 (2022).

  41. Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Lu, P. et al. Direct syngas conversion to liquefied petroleum gas: importance of a multifunctional metal–zeolite interface. Appl. Energy 209, 1–7 (2018).

  43. Sun, Q. M. et al. Subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. 59, 19450–19459 (2020).

  44. Tong, M. L. et al. Hydrogenation of CO2 to LPG over CuZnZr/MeSAPO-34 catalysts. New J. Chem. 44, 9328–9336 (2020).

    Article  CAS  Google Scholar 

  45. Liu, Z. P., Ni, Y. M., Sun, T. T., Zhu, W. L. & Liu, Z. M. Conversion of CO2 and H2 into propane over InZrOx and SSZ-13 composite catalyst. J. Energy Chem. 54, 111–117 (2021).

  46. Li, C. M., Yuan, X. D. & Fujimoto, K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite. Appl. Catal. A 475, 155–160 (2014).

  47. Li, H. J. et al. Well-defined core-shell-structured capsule catalyst for direct conversion of CO2 into liquefied petroleum gas. Chem. Sus. Chem. 13, 2060–2065 (2020).

    Article  CAS  Google Scholar 

  48. Ramirez, A. et al. Multifunctional catalyst combination for the direct conversion of CO2 to propane. JACS Au 1, 1719–1732 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, G. et al. Role of SAPO-18 acidity in direct syngas conversion to light olefins. ACS Catal. 10, 12370–12375 (2020).

    Article  CAS  Google Scholar 

  50. Lu, Z. et al. Atomic layer deposition overcoating improves catalyst selectivity and longevity in propane dehydrogenation. ACS Catal. 10, 13957–13967 (2020).

    Article  CAS  Google Scholar 

  51. Wang, Y. H. et al. Visualizing element migration over bifunctional metal–zeolite catalysts and its impact on catalysis. Angew. Chem. Int. Ed. 60, 17735–17743 (2021).

  52. Zhou, C. Q. et al. Performance improvement of amorphous Ga2O3 ultraviolet photodetector by annealing under oxygen atmosphere. J. Alloy. Compd 840, 155585 (2020).

    Article  CAS  Google Scholar 

  53. Wang, J. J. et al. High-performance MaZrOx (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol. ACS Catal. 9, 10253–10259 (2019).

  54. Akkharaphatthawon, N. et al. Tuning adsorption properties of GaxIn2−xO3 catalysts for enhancement of methanol synthesis activity from CO2 hydrogenation at high reaction temperature. Appl. Surf. Sci. 489, 278–286 (2019).

  55. Liang, F. L., Yu, Y., Zhou, W., Xu, X. Y. & Zhu, Z. H. Highly defective CeO2 as a promoter for efficient and stable water oxidation. J. Mater. Chem. A 3, 634–640 (2015).

  56. Jiang, X. et al. A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol. J. Catal. 383, 283–296 (2020).

    Article  CAS  Google Scholar 

  57. Dang, S. S. et al. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts. J. Catal. 364, 382–393 (2018).

    Article  CAS  Google Scholar 

  58. Kattel, S., Yan, B. H., Yang, Y. X., Chen, J. G. G. & Liu, P. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. J. Am. Chem. Soc. 138, 12440–12450 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Yu, J. F. et al. Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol. ACS Catal. 10, 14694–14706 (2020).

    Article  CAS  Google Scholar 

  60. Yao, L. B., Shen, X. C., Pan, Y. B. & Peng, Z. M. Synergy between active sites of Cu–In–Zr–O catalyst in CO2 hydrogenation to methanol. J. Catal. 372, 74–85 (2019).

  61. Wang, Y. H. et al. Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nat. Commun. 10, 1166 (2019).

  62. Yang, Y., Mims, C. A., Mei, D. H., Peden, C. H. F. & Campbell, C. T. Mechanistic studies of methanol synthesis over Cu from CO/CO2/H2/H2O mixtures: The source of C in methanol and the role of water. J. Catal. 298, 10–17 (2013).

    Article  CAS  Google Scholar 

  63. Yan, B. H. et al. Tuning CO2 hydrogenation selectivity via metal-oxide interfacial sites. J. Catal. 374, 60–71 (2019).

    Article  CAS  Google Scholar 

  64. Liu, X. L. et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34. Chem. Commun. 54, 140–143 (2018).

    Article  CAS  Google Scholar 

  65. Feng, O. Y., Kondo, J. N., Maruya, K. & Domen, K. Site conversion of methoxy species on ZrO2. J. Phys. Chem. B 101, 4867–4869 (1997).

  66. Wang, J. J. et al. A highly selective and stable ZnO–ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 3, e1701290 (2017).

  67. Bjørgen, M. et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. J. Catal. 249, 195–207 (2007).

    Article  Google Scholar 

  68. Nieskens, D. L. S., Lunn, J. D. & Malek, A. Understanding the enhanced lifetime of SAPO-34 in a direct syngas-to-hydrocarbons process. ACS Catal. 9, 691–700 (2019).

    Article  CAS  Google Scholar 

  69. Arora, S. S., Shi, Z. C. & Bhan, A. Mechanistic basis for effects of high-pressure H2 cofeeds on methanol-to-hydrocarbons catalysis over zeolites. ACS Catal. 9, 6407–6414 (2019).

    Article  CAS  Google Scholar 

  70. Wang, S. et al. Polymethylbenzene or alkene cycle? Theoretical study on their contribution to the process of methanol to olefins over H‑ZSM‑5 zeolite. J. Phys. Chem. C 119, 28482–28498 (2015).

    Article  CAS  Google Scholar 

  71. Deimund, M. A. et al. Effect of heteroatom concentration in SSZ-13 on the methanol-to-olefins reaction. ACS Catal. 6, 542–550 (2016).

    Article  CAS  Google Scholar 

  72. Arora, S., Nieskens, D. L. S., Malek, A. & Bhan, A. Lifetime improvement in methanol-to-olefins catalysis over chabazite materials by high-pressure H2 co-feeds. Nat. Catal. 1, 666–672 (2018).

  73. Zhao, X. B. et al. Achieving a superlong lifetime in the zeolite-catalyzed MTO reaction under high pressure: synergistic effect of hydrogen and water. ACS Catal. 9, 3017–3025 (2019).

    Article  CAS  Google Scholar 

  74. Wang, S. et al. Direct conversion of syngas into light olefins with low CO2 emission. ACS Catal. 10, 2046–2059 (2020).

    Article  CAS  Google Scholar 

  75. Kresse, G. & Hafner, J. Ab initio molecular dynamics simulation of the liquid metal amorphous semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

  76. Kresse, G. & Furthmuller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

  77. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Blochl, P. E. Projector augmented wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  79. Frisch, M. J. et al. Gaussian 09, revision E.01 (Gaussian, Inc., 2009).

  80. Chai, J. D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

  81. Goerigk, L. & Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 13, 6670–6688 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant nos. 2020YFA0210900 and 2018YFB0604802), National Natural Science Foundation of China (grant nos. U1910203, 21991090 and 21991092), the European Union’s Horizon 2020 research and innovation program (grant no. 837733) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (grant no. 2021172). We thank Y. Chen (Institute of Coal Chemistry, CAS) and Y. Su (Taiyuan University of Technology, TYUT) for their kind help with the mechanism analysis.

Author information

Authors and Affiliations

Authors

Contributions

S.W. implemented the experiments and theoretical calculations, and completed the original draft. L.Z. and P.W. conducted the isotope-labelled experiment and NMR measurements. W.J. synthesized the zeolite. Z.Q. and M.D. performed part of the catalyst preparation and test. J.W. and U.O. analysed the reaction mechanism. W.F. designed the whole study and revised the paper. All the authors contributed to the discussions on the results.

Corresponding author

Correspondence to Weibin Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Joseph DeWilde and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–60, Tables 1–4, Methods and References.

Supplementary Data 1

Atomic coordinates of the optimized structures.

Supplementary Data 2

Source data for Supplementary Information.

Source data

Source Data Fig. 1

Activity.

Source Data Fig. 2

Activity.

Source Data Fig. 3

In situ DRIFTS.

Source Data Fig. 4

In situ DRIFTS and 13C MAS NMR.

Source Data Fig. 5

GC–MS and thermogravimetric analysis.

Source Data Fig. 6

Activity.

Source Data Fig. 7

Reaction kinetics.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, L., Wang, P. et al. Highly selective hydrogenation of CO2 to propane over GaZrOx/H-SSZ-13 composite. Nat Catal 5, 1038–1050 (2022). https://doi.org/10.1038/s41929-022-00871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00871-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing