Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Incipient class II mixed valency in a plutonium solid-state compound

Abstract

Electron transfer in mixed-valent transition-metal complexes, clusters and materials is ubiquitous in both natural and synthetic systems. The degree to which intervalence charge transfer (IVCT) occurs, dependent on the degree of delocalization, places these within class II or III of the Robin–Day system. In contrast to the d-block, compounds of f-block elements typically exhibit class I behaviour (no IVCT) because of localization of the valence electrons and poor spatial overlap between metal and ligand orbitals. Here, we report experimental and computational evidence for delocalization of 5f electrons in the mixed-valent PuIII/PuIV solid-state compound, Pu3(DPA)5(H2O)2 (DPA = 2,6-pyridinedicarboxylate). The properties of this compound are benchmarked by the pure PuIII and PuIV dipicolinate complexes, [PuIII(DPA)(H2O)4]Br and PuIV(DPA)2(H2O)3·3H2O, as well as by a second mixed-valent compound, PuIII[PuIV(DPA)3H0.5]2, that falls into class I instead. Metal-to-ligand charge transfer is involved in both the formation of Pu3(DPA)5(H2O)2 and in the IVCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphical representation of the structures of PuIII-1 and PuIV-2.
Figure 2: Depiction of the structure of PuIII,IV-3.
Figure 3: Illustration of the structure of PuIV,III-4.
Figure 4: Rendering of the SOMOs and LUMOs in PuIII-1 and PuIV-2.
Figure 5: Absorption spectra of PuIII-1, PuIV-2, PuIII,IV-3, and PuIV,III-4.
Figure 6: Representation of the frontier orbitals of PuIII,IV-3.

Similar content being viewed by others

References

  1. Rausch, J. et al. Heterometallic europium disiloxanediolates: synthesis, structural diversity, and photo-luminescence properties. Inorg. Chem. 53, 11662–11674 (2014).

    Article  CAS  Google Scholar 

  2. Jones, M. B. et al. Uncovering f-element bonding differences and electronic structure in a series of 1:3 and 1:4 complexes with a diselenophosphinate ligand. Chem. Sci. 4, 1189–1203 (2013).

    Article  CAS  Google Scholar 

  3. Fieser, M. E. et al. Structural, spectroscopic, and theoretical comparison of traditional vs recently discovered Ln2+ Ions in the [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln] complexes: the variable nature of Dy2+ and Nd2+. J. Am. Chem. Soc. 137, 369–382 (2015).

    Article  CAS  Google Scholar 

  4. Polinski, M. J. et al. Differentiating between trivalent lanthanides and actinides. J. Am. Chem. Soc. 134, 10682–10692 (2012).

    Article  CAS  Google Scholar 

  5. Antonio, M. R., Xue, J. S. & Soderholm, L. The oxidation state of cerium in Ce2MoO6 . J. Alloys Compd. 207–208, 444–448 (1994).

    Article  Google Scholar 

  6. Sykora, R. E. et al. Isolation of intermediate-valent Ce(III)/Ce(IV) hydrolysis products in the preparation of cerium iodates: electronic and structural aspects of Ce2(IO3)6(OHx) (x ≈ 0 and 0.44). Chem. Mater. 16, 1343–1349 (2004).

    Article  CAS  Google Scholar 

  7. Morton, C. et al. Stabilization of cerium(IV) in the presence of an iodide ligand: remarkable effects of lewis acidity on valence state. J. Am. Chem. Soc. 121, 11255–11256 (1999).

    Article  CAS  Google Scholar 

  8. Wickleder, C. A new mixed valent europium chloride: Na5Eu7Cl22 . Z. Naturforsch. 57b, 901–907 (2002).

    Article  Google Scholar 

  9. Wickleder, C. KEu2Cl6 und K1,6Eu1,4Cl5: Zwei neue gemischtvalente Europiumchloride Z. Anorg. Allg. Chem. 628, 1815–1820 (2002).

    Article  CAS  Google Scholar 

  10. van Schaik, W., Lizzo, S., Smit, W. & Blasse, G. Influence of impurities on the luminescence quantum efficiency of (La, Ce, Tb)PO4 . J. Electrochem. Soc. 140, 216–221 (1993).

    Article  CAS  Google Scholar 

  11. Polinski, M. J. et al. Unusual structure, bonding and properties in a californium borate. Nat. Chem. 6, 387–392 (2014).

    Article  CAS  Google Scholar 

  12. Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).

    Article  CAS  Google Scholar 

  13. Robin, M. B. & Day, P. Mixed valence chemistry: a survey and classification. Adv. Inorg. Chem. Radiochem. 10, 248–422 (1967).

    Google Scholar 

  14. Gaunt, A. J. et al. Experimental and theoretical comparison of actinide and lanthanide bonding in M[N(EPR2)2]3 Complexes (M = U, Pu, La, Ce; E = S, Se, Te; R = Ph, iPr, H). Inorg. Chem. 47, 29–41 (2008).

    Article  CAS  Google Scholar 

  15. Riglet, C., Robouch, P. & Vitorge, P. Standard potentials of the (MO22+/MO2+) and (M4+/M3+) redox systems for neptunium and plutonium. Radiochim. Acta. 46, 85–94 (1989).

    CAS  Google Scholar 

  16. Heathman, C. R. & Nash, K. L. Characterization of europium and americium dipicolinate complexes. Sep. Sci. Tech. 47, 2029–2037 (2012).

    CAS  Google Scholar 

  17. Cary, S. K. et al. Emergence of californium as the second transitional element in the actinide series. Nat. Commun. 6, 6827–6834 (2015).

    Article  CAS  Google Scholar 

  18. Silver, M. A. et al. Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state. Science 353, aaf3762 (2016).

    Article  Google Scholar 

  19. Cross, J. N. et al. Syntheses, structures, and spectroscopic properties of plutonium and americium phosphites and the redetermination of the ionic radii of Pu(III) and Am(III). Inorg. Chem. 51, 8419–8424 (2012).

    Article  CAS  Google Scholar 

  20. Gaunt, A. J. et al. Low-valent molecular plutonium halide complexes. Inorg. Chem. 47, 8412–8419 (2008).

    Article  CAS  Google Scholar 

  21. Wilson, R. E., Schaars, D. D., Andrews, M. B. & Cahill, C. L. Supramolecular interactions in PuO2Cl42– and PuCl62– Complexes with protonated pyridines: synthesis, crystal structures, and raman spectroscopy. Inorg. Chem. 53, 383–392 (2014).

    Article  CAS  Google Scholar 

  22. Castro, L., Yahia, A. & Maron, L. A DFT study of the reactivity of actinidocenes (U, Np and Pu) with pyridine and pyridine N-oxide derivatives. Dalton Trans. 39, 6682–6692 (2010).

    Article  CAS  Google Scholar 

  23. Castro, L., Yahia, A. & Maron, L. Are 5f electrons really active in organoactinide reactivity? some insights from DFT studies. ChemPhysChem 11, 990–994 (2010).

    Article  CAS  Google Scholar 

  24. Castro, L., Yahia, A. & Maron, L. A DFT study of the reactivity of Cp2AnMe2 with pyridine N-oxide: towards a predicted different reactivity of U/Pu and Np. C. R. Chim. 13, 870–875 (2010).

    Article  CAS  Google Scholar 

  25. Carnall, W. T. A systematic analysis of the spectra of trivalent actinide chlorides in D3h site symmetry. J. Chem. Phys. 96, 8713–8726 (1992).

    Article  CAS  Google Scholar 

  26. Carnall, W. T., Liu, G. K., Williams, C. W. & Reid, M. F. Analysis of the crystal-field spectra of the actinide tetrafluorides. I. Uranium, neptunium, and plutonium tetrafluorides (UF4, NpF4, and PuF4). J. Chem. Phys. 95, 7194–7203 (1991).

    Article  CAS  Google Scholar 

  27. Brunschwig, B. S., Creutz, C. & Sutin, N. Optical transitions of symmetrical mixed-valence systems in the Class II–III transition regime. Chem. Soc. Rev. 31, 168–184 (2002).

    Article  CAS  Google Scholar 

  28. Kaim, W., Klein, A. & Glöckle, M. Exploration of mixed-valence chemistry: inventing new analogues of the Creutz-Taube ion. Acc. Chem. Res. 33, 755–763 (2000).

    Article  CAS  Google Scholar 

  29. Rák, Z. s., Ewing, R. C. & Becker, U. Ferric garnet matrices for immobilization of actinides. J. Nucl. Mater. 436, 1–7 (2013).

    Article  Google Scholar 

  30. Zener, C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951).

    Article  CAS  Google Scholar 

  31. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  32. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  33. Küchle, W., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted pseudopotentials for the actinides. parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 100, 7535–7542 (1994).

    Article  Google Scholar 

  34. Cao, X. Y., Dolg, M. & Stoll, H. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys. 118, 487–496 (2003).

    Article  CAS  Google Scholar 

  35. Cao, X. & Dolg, M. Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Molec. Struct. Theochem. 673, 203–209 (2004).

    Article  CAS  Google Scholar 

  36. Moritz, A., Cao, X. Y. & Dolg, M. Quasirelativistic energy-consistent 5f-in-core pseudopotentials for divalent and tetravalent actinide elements. Theor. Chem. Acc. 118, 845–854 (2007).

    Article  CAS  Google Scholar 

  37. Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).

    Article  CAS  Google Scholar 

  38. Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973).

    Article  CAS  Google Scholar 

  39. Binkley, J. S., Pople, J. A. & Hehre, W. J. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 102, 939–947 (1980).

    Article  CAS  Google Scholar 

  40. Frisch, M. J. et al. Gaussian 09 v. A.02 (Gaussian, 2009).

  41. Zhurko, G. A. ChemCraft Version 1.8 (2017); http://www.chemcraftprog.com

  42. Casida, M. E., Jamorski, C., Casida, K. C. & Salahub, D. R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108, 4439–4449 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Heavy Elements Chemistry Program under award number DE-FG02-13ER16414. We are especially grateful for the assistance and supervision by the Office of Environmental Health and Safety at Florida State University, specifically J. A. Johnson and A. L. Gray of the Office of Radiation Safety for their facilitation of these studies. Magnetization measurements using the VSM SQUID MPMS were performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative agreement number DMR-1157490, the State of Florida, and the US Department of Energy. We are grateful for helpful discussions with N. M. Edelstein, M. P. Jensen and G. Liu.

Author information

Authors and Affiliations

Authors

Contributions

S.K.C., J.N.C., S.S.G. and T.E.A.-S. conceived, designed, and carried out the synthetic and crystallographic experiments. S.K.C. and J.T.S. carried out low-temperature spectroscopic experiments. S.K.C., S.S.G., J.N.C., and M.J.P. were involved in the crystallographic analysis. Cyclic voltammetry experiments were conducted by M.L.M. and D.L.H.; R.E.B. designed and carried out the magnetism experiments and analysed the data. L.M. carried out the computational analysis. All authors discussed and co-wrote the manuscript.

Corresponding authors

Correspondence to Laurent Maron or Thomas E. Albrecht-Schmitt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1154 kb)

Supplementary information

Crystallographic data for compound PuIII-1. (CIF 3654 kb)

Supplementary information

Crystallographic data for compound PuIV-2. (CIF 3474 kb)

Supplementary information

Crystallographic data for compound PuIII,IV-3. (CIF 927 kb)

Supplementary information

Crystallographic data for compound PuIV,III-4. (CIF 482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cary, S., Galley, S., Marsh, M. et al. Incipient class II mixed valency in a plutonium solid-state compound. Nature Chem 9, 856–861 (2017). https://doi.org/10.1038/nchem.2777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing