Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chelation and stabilization of berkelium in oxidation state +IV

Abstract

Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin—a mammalian metal transporter—in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)–ligand–protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Stabilization and sensitization of Bk(IV) were achieved through chelation with a siderophore derivative.
Figure 2: Mass spectrometry provided definitive evidence of the oxidation state +IV for the Bk species formed with ligand 1.
Figure 3: The selectivity of Scn toward [M(III)1] complexes and the different polarity of [M(IV)1] complexes can be used to discriminate Bk from other metal ions.

Accession codes

Primary accessions

Protein Data Bank

References

  1. 1

    Kosyakov, V. N. Perspective methods for Berkelium–249 preparation and application. J. Nucl. Sci. Technol. 39, 42–44 (2002).

    Article  Google Scholar 

  2. 2

    Vértes, A., Nagy, S., Klencsár, Z. & Lovas, R. G. Handbook of Nuclear Chemistry: Instrumentation, Separation Techniques Environmental Issues (Kluwer Academic, 2003).

    Google Scholar 

  3. 3

    Hobart, D. E. & Peterson, J. R. in The Chemistry of the Actinide and Transactinide Elements (eds Morss, L. R., Edelstein, N., Fuger, J. & Katz, J. J.) Ch. 10, 1444–1498 (Springer, 2006).

    Book  Google Scholar 

  4. 4

    Silver, M. A. et al. Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state. Science 353, aaf3762 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  5. 5

    Hungate, F. P. et al. Preliminary data on 253Es and 249Bk metabolism in rats. Health Phys. 22, 653–656 (1972).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Taylor, G. N. et al. Microscopic distribution of californium-249 and berkelium-249 in the soft tissues of beagles. Health Phys. 22, 691–693 (1972).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Runde, W. H. & Mincher, B. J. Higher oxidation states of americium: preparation, characterization and use for separations. Chem. Rev. 111, 5723–5741 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Czerwinski, K. R. Studies of Fundamental Properties of Rutherfordium (Element 104) Using Organic Complexing Agents. PhD thesis, Univ. California (1992).

  9. 9

    Thompson, S. G., Ghiorso, A. & Seaborg, G. T. Element 97. Phys. Rev. 77, 838–839 (1950).

    CAS  Article  Google Scholar 

  10. 10

    Thompson, S. G., Cunningham, B. B. & Seaborg, G. T. Chemical properties of Berkelium. J. Am. Chem. Soc. 72, 2798–2801 (1950).

    CAS  Article  Google Scholar 

  11. 11

    Antonio, M. R., Williams, C. W. & Soderholm, L. Berkelium redox speciation. Radiochim. Acta 90, 851–856 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Cotton, S. Lanthanide and Actinide Chemistry (Wiley, 2006).

    Book  Google Scholar 

  13. 13

    Stokely, J. R., Baybarz, R. D. & Peterson, J. R. The formal potential of the Bk(IV)-Bk(III) couple in several media. J. Inorg. Nucl. Chem. 34, 392–393 (1972).

    CAS  Article  Google Scholar 

  14. 14

    Wadsworth, E., Duke, F. R. & Goetz, C. A. Present status of cerium (IV)–cerium (III) potentials. Anal. Chem. 29, 1824–1825 (1957).

    CAS  Article  Google Scholar 

  15. 15

    Gutmacher, R. G. et al. The absorption spectra of Bk3+ and Bk4+ in solution. J. Inorg. Nucl. Chem. 29, 2341–2345 (1967).

    CAS  Article  Google Scholar 

  16. 16

    Baybarz, R. D. & Stokely, J. R. Absorption spectra of Bk(III) and Bk(IV) in several media. J. Inorg. Nucl. Chem. 34, 739–746 (1972).

    CAS  Article  Google Scholar 

  17. 17

    Gutmacher, R. G., Bodé, D. D., Lougheed, R. W. & Hulet, E. K. The stability of tetravalent berkelium in acid solution and the absorption spectra of Bk(IV) and Bk(III). J. Inorg. Nucl. Chem. 35, 979–994 (1973).

    CAS  Article  Google Scholar 

  18. 18

    Milyukova, M. S., Malikov, D. A., Kuzovkina, E. V. & Myasoedov, B. F. Extraction of tetravalent berkelium by high molecular weight amines in the presence of heteropolyanions. J. Radioanal. Nucl. Chem. 104, 81–89 (1986).

    CAS  Article  Google Scholar 

  19. 19

    Payne, G. F. & Peterson, J. R. Possible stabilization of the tetravalent oxidation state of berkelium and californium in acetonitrile with triphenylarsine oxide. Inorganica Chim. Acta 139, 111–112 (1987).

    CAS  Article  Google Scholar 

  20. 20

    Morris, D. E., Hobart, D. E. & Palmer, P. D. Voltammetric investigation of the berkelium(IV/III) couple in concentrated aqueous carbonate solutions. Radiochim. Acta 49, 125–134 (1990).

    CAS  Article  Google Scholar 

  21. 21

    Bunin, D. I. et al. Dose-dependent efficacy and safety toxicology of hydroxypyridinonate actinide decorporation agents in rodents: towards a safe and effective human dosing regimen. Radiat. Res. 179, 171–182 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Choi, T. A. et al. Biodistribution of the multidentate hydroxypyridinonate ligand [14C]-3,4,3-LI(1,2-HOPO), a potent actinide decorporation agent. Drug Dev. Res. 76, 107–122 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Choi, T. A. et al. In vitro metabolism and stability of the actinide chelating agent 3,4,3-LI(1,2-HOPO). J. Pharm. Sci. 104, 1832–1838 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Sturzbecher-Hoehne, M., Deblonde, G. J. -P. & Abergel, R. J. Solution thermodynamic evaluation of hydroxypyridinonate chelators 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO) for UO2(VI) and Th(IV) decorporation. Radiochim. Acta 101, 359–366 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Sturzbecher-Hoehne, M., Kullgren, B., Jarvis, E. E., An, D. D. & Abergel, R. J. Highly luminescent and stable hydroxypyridinonate complexes: a step towards new curium decontamination strategies. Chem. Eur. J. 20, 9962–9968 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Sturzbecher-Hoehne, M., Choi, T. A. & Abergel, R. J. Hydroxypyridinonate complex stability of group (IV) metals and tetravalent f-block elements: the key to the next generation of chelating agents for radiopharmaceuticals. Inorg. Chem. 54, 3462–3468 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Sturzbecher-Hoehne, M., Yang, P., D'Aléo, A. & Abergel, R. J. Intramolecular sensitization of americium luminescence in solution: shining light on short-lived forbidden 5f transitions. Dalton Trans. 45, 9912–9919, (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Deblonde, G. J.-P., Sturzbecher-Hoehne, M. & Abergel, R. J. Solution thermodynamic stability of complexes formed with the octadentate hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO): a critical feature for efficient chelation of lanthanide(IV) and actinide(IV) Ions. Inorg. Chem. 52, 8805–8811 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  30. 30

    Baybarz, R. D. Dissociation constants of the transplutonium element chelates of diethylenetriaminepenta-acetic acid (DTPA) and the application of DTPA chelates to solvent extraction separations of transplutonium elements from the lanthanide elements. J. Inorg. Nucl. Chem. 27, 1831–1839 (1965).

    CAS  Article  Google Scholar 

  31. 31

    Nugent, L. J. et al. Intramolecular energy transfer and sensitized luminescence in actinide (III) β-diketone chelates. J. Phys. Chem. 73, 1540–1549 (1969).

    CAS  Article  Google Scholar 

  32. 32

    Carnall, W., Beitz, J. & Crosswhite, H. Electronic energy level and intensity correlations in the spectra of the trivalent actinide aquo ions. III. Bk3+. J. Chem. Phys. 80, 2301–2308 (1984).

    CAS  Article  Google Scholar 

  33. 33

    Barbanel, A. Nephelauxetic effect and hypersensitivity in the optical spectra of actinides. Radiochim. Acta 78, 91–96 (1997).

    CAS  Google Scholar 

  34. 34

    Liu, G., Carnall, W., Jursich, G. & Williams, C. Analysis of the crystal-field spectra of the actinide tetrafluorides. II. AmF4, CmF4, Cm4+:CeF4, and Bk4+:CeF4 . J. Chem. Phys. 101, 8277–8289 (1994).

    CAS  Article  Google Scholar 

  35. 35

    Carnall, W. T. A Systematic Analysis of the Spectra of Trivalent Actinide Chlorides in D3h Site Symmetry. (Argonne National Laboratory, 1989).

    Book  Google Scholar 

  36. 36

    Jursich, G. M. et al. Laser induced fluorescence of 249Bk4+ in CeF4 . Inorganica Chim. Acta 139, 273–274 (1987).

    CAS  Article  Google Scholar 

  37. 37

    Nugent, L. J., Baybarz, R. D., Burnett, J. L. & Ryan, J. L. Electron-transfer and fd absorption bands of some lanthanide and actinide complexes and the standard (II-III) oxidation potential for each member of the lanthanide and actinide series. J. Phys. Chem. 77, 1528–1539 (1973).

    CAS  Article  Google Scholar 

  38. 38

    Allred, B. E. et al. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. Proc. Natl Acad. Sci. USA 112, 10342–10347 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Lundberg, D. & Persson, I. The size of actinoid (III) ions–structural analysis vs. common misinterpretations. Coord. Chem. Rev. 318, 131–134 (2016).

    CAS  Article  Google Scholar 

  40. 40

    Myasoedov, B. & Lebedev, I. Latest achievements in the analytical chemistry of actinides. J. Radioanal. Nucl. Chem. 147, 5–26 (1991).

    CAS  Article  Google Scholar 

  41. 41

    Maruyama, T. et al. Rapid chemical separation for Bk. J. Nucl. Radiochem. Sci. 3, 155–158 (2002).

    Article  Google Scholar 

  42. 42

    Peppard, D. F., Moline, S. W. & Mason, G. W. Isolation of berkelium by solvent extraction of the tetravalent species. J. Inorg. Nucl. Chem. 4, 344–348 (1957).

    CAS  Article  Google Scholar 

  43. 43

    Moore, F. L. New method for rapid separation of berkelium (IV) from cerium (IV) by anion exchange. Anal. Chem. 39, 1874–1876 (1967).

    CAS  Article  Google Scholar 

  44. 44

    Moore, F. L. Liquid–liquid extraction method for the separation of cerium (IV) from berkelium (IV) and other elements. Anal. Chem. 41, 1658–1661 (1969).

    CAS  Article  Google Scholar 

  45. 45

    Chudinov, E. G. & Pirozhkov, S. V. The separation of berkelium(III) from cerium(III). J. Radioanal. Chem. 10, 41–46 (1972).

    CAS  Article  Google Scholar 

  46. 46

    Liu, Y.-F. et al. Procedures for a fast separation of berkelium from complex mixtures of reaction products. J. Radioanal. Nucl. Chem. 76, 119–124 (1983).

    CAS  Article  Google Scholar 

  47. 47

    Chang, P. Y. et al. Analytical methods for the bioavailability evaluation of hydroxypyridinonate actinide decorporation agents in pre-clinical pharmacokinetic studies. J. Chromatogr. Sep. Tech. 4, 196 (2013).

    CAS  Article  Google Scholar 

  48. 48

    Goetz, D. H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Valiev, M. et al. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010).

    CAS  Article  Google Scholar 

  50. 50

    Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    CAS  Article  Google Scholar 

  51. 51

    Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    CAS  Article  Google Scholar 

  52. 52

    Küchle, W., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 100, 7535–7542 (1994).

    Article  Google Scholar 

  53. 53

    Godbout, N., Salahub, D. R., Andzelm, J. & Wimmer, E. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can. J. Chem. 70, 560–571 (1992).

    CAS  Article  Google Scholar 

  54. 54

    Runge, E. & Gross, E. K. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    CAS  Article  Google Scholar 

  55. 55

    Brabec, J. et al. Efficient algorithms for estimating the absorption spectrum within linear response TDDFT. J. Chem. Theory Comput. 11, 5197–5208 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Jensen, H. J. Aa. et al. DIRAC12. http://www.diracprogram.org (2012)

  57. 57

    Dyall, K. G. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinides Ac–Lr. Theor. Chem. Acc. 117, 491–500 (2007).

    CAS  Article  Google Scholar 

  58. 58

    Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (DoE), Office of Science Early Career Research Program and Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division at the Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231 (R.J.A.), by the National Institutes of Health (R01DK073462, R.K.S.), and by the Scientific Discovery through Advanced Computing (SciDAC) program of the US DoE, Office of Science, Office of Advanced Scientific Computing and Office of Basic Energy Sciences (W.A.d.J.). The Radiochemical Engineering and Development Center at Oak Ridge National Laboratory is supported by the US DoE, Isotope Development and Production for Research and Applications Program. The Advanced Light Source (ALS) and Energy Research Scientific Computing Center (NERSC) are supported by the Director, Office of Science, and Office of Basic Energy Sciences, of the US DoE under contract no. DE-AC02-05CH11231. The Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program provided an award of computer time through the Oak Ridge Leadership Computing Facility, a US DoE Office of Science User Facility supported under Contract DE-AC05-00OR22725. We thank M. Allaire, S. Morton, J. Bramble, K. Engle, M. Dupray, and I. Tadesse for assistance in implementing diffraction data collection on radioactive crystals at ALS 5.0.2 beamline.

Author information

Affiliations

Authors

Contributions

G.J.-P.D., M.S.-H., W.A.d.J., R.K.S., and R.J.A. designed the research. G.J.-P.D., M.S.-H., and M.-C.I. collected and analysed optical spectroscopy and mass spectrometry data. R.J.A. and D. D. A crystallized the protein–metal adducts. P.B.R., D.D.A., and C.Y.R. collected and analysed crystallographic data. P.B.R. and R.K.S. solved the structures. J.B. and W.A.d.J. performed theoretical computations. All of the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Wibe A. de Jong or Roland K. Strong or Rebecca J. Abergel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 952 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deblonde, GP., Sturzbecher-Hoehne, M., Rupert, P. et al. Chelation and stabilization of berkelium in oxidation state +IV. Nature Chem 9, 843–849 (2017). https://doi.org/10.1038/nchem.2759

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing