Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Pointed and Tramtrack69 establish an EGFR-dependent transcriptional switch to regulate mitosis

Abstract

Cell division in animals must be regulated; during development, for example, proliferation often occurs in spatially and temporally restricted patterns1,2,3, and loss of mitotic control underlies cancer4. The epidermal growth factor receptor (EGFR) has been implicated extensively in the control of cell proliferation in metazoans5,6,7; in addition, hyperactivity of the EGFR and its three relatives, ErbB2–ErbB4, are implicated in many cancers8. But little is known about how these receptor tyrosine kinases regulate the cell cycle. In the developing Drosophila melanogaster imaginal eye disc, there is a single patterned mitosis that sweeps across the eye disc epithelium in the third larval instar9. This 'second mitotic wave' is triggered by EGFR signalling5 and depends on expression of String, the Drosophila homologue of Cdc25 phosphatase, the ultimate regulator of mitosis in all eukaryotic cells10,11,12. Here we show that two antagonistic transcriptional regulators, Pointed, an activator, and Tramtrack69, a repressor, directly regulate the transcription of string. The activity of at least one of these regulators, Pointed, is controlled by EGFR signalling. This establishes a molecular mechanism for how intercellular signalling can control string expression, and thereby cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ttk69 blocks the SMW in G2.
Figure 2: Ttk69 acts through control of string expression.
Figure 3: Loss of Pnt causes G2 arrest in SMW cells.
Figure 4: Ttk69 and PntP2 bind specifically to overlapping sites.
Figure 5: Ttk69 and PntP2 compete for binding to the string promoter.

Similar content being viewed by others

References

  1. Foe, V. E. Development 107, 1–22 (1989).

    CAS  PubMed  Google Scholar 

  2. Zhu, L. & Skoultchi, A. I. Curr. Opin. Genet. Dev. 11, 91–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Dyer, M. A. & Cepko, C. L. Nature Rev. Neurosci. 2, 333–342 (2001).

    Article  CAS  Google Scholar 

  4. Corn, P. G. & El-Deiry, W. S. BioEssays 24, 83–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Baker, N. E. & Yu, S. Y. Cell 104, 699–708 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Schlessinger, J. & Ullrich, A. Neuron 9, 383–391 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Yu, Q., Geng, Y. & Sicinski, P. Nature 411, 1017–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Yarden, Y. & Sliwkowski, M. X. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  9. Ready, D. F., Hanson, T. E. & Benzer, S. Dev. Biol. 53, 217–240 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Russell, P. & Nurse, P. Cell 45, 145–153 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Sadhu, K., Reed, S. I., Richardson, H. & Russell, P. Proc. Natl Acad. Sci. USA 87, 5139–5143 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Edgar, B. A. & O'Farrell, P. H. Cell 62, 469–480 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomas, B. J., Gunning, D. A., Cho, J. & Zipursky, S. L. Cell 77, 1003–1014 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Wolff, T. & Ready, D. F. in The development of Drosophila melanogaster Vol. 2 (eds Bate, M. & Martinez-Arias, A.) 1277–1325 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1993).

    Google Scholar 

  15. Lai, Z. C. & Rubin, G. M. Cell 70, 609–620 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. O'Neill, E. M., Rebay, I., Tjian, R. & Rubin, G. M. Cell 78, 137–147 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Harrison, S. D. & Travers, A. A. EMBO J. 9, 207–216 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Read, D. & Manley, J. L. EMBO J. 11, 1035–1044 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown, J. L. & Wu, C. Development 117, 45–58 (1993).

    CAS  PubMed  Google Scholar 

  20. Li, S., Li, Y., Carthew, R. W. & Lai, Z. C. Cell 90, 469–478 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Tang, A. H., Neufeld, T. P., Kwan, E. & Rubin, G. M. Cell 90, 459–467 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Badenhorst, P. Development 128, 4093–4101 (2001).

    CAS  PubMed  Google Scholar 

  23. Knoblich, J. A. & Lehner, C. F. EMBO J. 12, 65–74 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lehner, C. F. & O'Farrell, P. H. Cell 61, 535–547 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moreno, S., Hayles, J. & Nurse, P. Cell 58, 361–372 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Gould, K. L. & Nurse, P. Nature 342, 39–45 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Lehman, D. A. et al. Development 126, 1793–803 (1999).

    CAS  PubMed  Google Scholar 

  28. Gabay, L. et al. Development 122, 3355–3362 (1996).

    CAS  PubMed  Google Scholar 

  29. Brunner, D. et al. Nature 370, 386–389 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Badenhorst, P., Finch, J. & Travers, A. Mech. Dev. 117, 87–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Murawsky, C. M. et al. EMBO Rep. 2, 1089–1094 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rossi, F. M., Kringstein, A. M., Spicher, A., Guicherit, O. M. & Blau, H. M. Mol. Cell 6, 723–728 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Xu, T. & Rubin, G. M. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  34. Lee, T. & Luo, L. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Lehembre, F. et al. Mol. Cell. Biol. 20, 1072–1082 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Cell 93, 1183–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Kauffman, R. C., Li, S., Gallagher, P. A., Zhang, J. & Carthew, R. W. Genes Dev. 10, 2167–2178 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Carthew, M. Domínguez and B. Edgar for reagents; K. Brown for advice on the manuscript; and R. Grenfell for help with FACS analysis. The Developmental Studies Hybridoma Bank (University of Iowa) provided some of the antibodies used. A.B. was supported by an EMBO Fellowship and a Marie Curie Fellowship from the European Union. C.M.M. was supported by the Natural Sciences and Engineering Research Council of Canada, and the Cambridge Commonwealth Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew A. Travers or Matthew Freeman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baonza, A., Murawsky, C., Travers, A. et al. Pointed and Tramtrack69 establish an EGFR-dependent transcriptional switch to regulate mitosis. Nat Cell Biol 4, 976–980 (2002). https://doi.org/10.1038/ncb887

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing