Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signal-dependent protection from apoptosis in mice expressing caspase-resistant Rb

Abstract

The retinoblastoma tumour suppressor protein RB is cleaved by caspases during apoptosis. Here we have mutated the caspase cleavage site in the carboxy terminus of the murine Rb protein in the mouse germ line to create the Rb-MI allele. After endotoxic shock, expression of Rb-MI inhibits apoptosis in the intestines, but not in the spleen, and promotes the survival of male mice. Fibroblasts expressing Rb-MI protein are protected from apoptosis induced by the tumour-necrosis factor-α type I receptor (TNFRI) but remain sensitive to cell death induced by DNA damage. Correspondingly, the release of cytochrome c and the activation of caspase-3 induced by TNFRI, but not by DNA damage, are defective in cells expressing Rb-MI. Our results highlight the importance of Rb cleavage in TNFRI-induced apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of the Rb-MI allele.
Figure 2: Response of Rb-MI mice to endotoxic shock
Figure 3: Effect of Rb-MI on apoptosis in the developing retina.
Figure 4: Loss of Rb sensitizes fibroblasts to apoptosis induced by TNF-α.
Figure 5: Rb-MI inhibits apoptosis induced by TNFRI.
Figure 6: Signal-dependent inhibition of apoptosis by Rb-MI.

Similar content being viewed by others

References

  1. Cryns, V. & Yuan, J. Proteases to die for. Genes Dev. 12, 1551–1570 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell. Dev. Biol. 15, 269–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Wolf, B. B. & Green, D. R. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J. Biol. Chem. 274, 20049–20052 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Clem, R. J. et al. c-IAP1 is cleaved by caspases to produce a proapoptotic C-terminal fragment. J. Biol. Chem. 276, 7602–7608 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Clem, R. J. et al. Modulation of cell death by Bcl-XL through caspase interaction. Proc. Natl Acad. Sci. USA 95, 554–559 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Srinivasula, S. M. et al. The Ced-3/interleukin 1β converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2α are substrates for the apoptotic mediator CPP32. J. Biol. Chem. 271, 27099–27106 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Janicke, R. U., Ng, P., Sprengart, M. L. & Porter, A. G. Caspase-3 is required for α-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem. 273, 15540–15545 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Janicke, R. U., Walker, P. A., Lin, X. Y. & Porter, A. G. Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J. 15, 6969–6978 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan, X., Martin, S. J., Green, D. R. & Wang, J. Y. Degradation of retinoblastoma protein in tumor necrosis factor- and CD95-induced cell death. J. Biol. Chem. 272, 9613–9616 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. An, B. & Dou, Q. P. Cleavage of retinoblastoma protein during apoptosis: an interleukin 1 beta-converting enzyme-like protease as candidate. Cancer Res. 56, 438–442 (1996).

    CAS  PubMed  Google Scholar 

  13. Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Clarke, A. R. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Almasan, A. et al. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc. Natl Acad. Sci. USA 92, 5436–5440 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R. & Vousden, K. H. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol. Cell 4, 771–781 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Tan, X. & Wang, J. Y. The caspase–Rb connection in cell death. Trends Cell Biol. 8, 116–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Boutillier, A. L., Trinh, E. & Loeffler, J. P. Caspase-dependent cleavage of the retinoblastoma protein is an early step in neuronal apoptosis. Oncogene 19, 2171–2178 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Hu, N. et al. Heterozygous Rb-1Δ20/+ mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 9, 1021–1027 (1994).

    CAS  PubMed  Google Scholar 

  23. Pfeffer, K. et al. Mice deficient for the 55 kD tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Piguet, P. F., Vesin, C., Guo, J., Donati, Y. & Barazzone, C. TNF-induced enterocytes apoptosis in mice is mediated by TNF receptor I and does not require p53. Eur. J. Immunol. 28, 3499–3505 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Borges, H. L. & Linden, R. Gamma irradiation leads to two waves of apoptosis in distinct cell populations of the retina of newborn rats. J. Cell Sci. 112, 4315–4324 (1999).

    CAS  PubMed  Google Scholar 

  26. Rehen, S. K., Varella, M. H., Freitas, F. G., Moraes, M. O. & Linden, R. Contrasting effects of protein synthesis inhibition and of cyclic AMP on apoptosis in the developing retina. Development 122, 1439–1448 (1996).

    CAS  PubMed  Google Scholar 

  27. Lewis, M. et al. Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc. Natl Acad. Sci. USA 88, 2830–2834 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Acehan, D. et al. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9, 423–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933 (2001).

    CAS  PubMed  Google Scholar 

  30. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Martins, L. M. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J. Biol. Chem. 277, 439–444 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein–caspase interaction. J. Biol. Chem. 277, 432–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Wallach, D. et al. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 17, 331–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Li, K. et al. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101, 389–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Erickson, S. L. et al. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature 372, 560–563 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Jupp, O. J. et al. Type II tumour necrosis factor-α receptor (TNFR2) activates c-Jun N- terminal kinase (JNK) but not mitogen-activated protein kinase (MAPK) or p38 MAPK pathways. Biochem. J. 359, 525–535. (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Macleod, K. F., Hu, Y. & Jacks, T. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J. 15, 6178–6188 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsai, K. Y. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Moroni, M. C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15, 267–285 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo, Z., Yikang, S., Yoshida, H., Mak, T. W. & Zacksenhaus, E. Inactivation of the retinoblastoma tumor suppressor induces apoptosis protease-activating factor-1 dependent and independent apoptotic pathways during embryogenesis. Cancer Res. 61, 8395–8400 (2001).

    CAS  PubMed  Google Scholar 

  44. Simpson, M. T. et al. Caspase 3 deficiency rescues peripheral nervous system defect in retinoblastoma nullizygous mice. J. Neurosci. 21, 7089–7098 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morris, E. J. & Dyson, N. J. Retinoblastoma protein partners. Adv. Cancer Res. 82, 1–54 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Wang lab for comments; M. Kingsbury for help in statistical analysis; R. Johnson for help with ES cell culture; N. Varki for histological analyses; S. Rossi for quantitative cytokine assays and M. Karin for Tnfr1−/- cells. B.N.C. is supported by a Damon Runyon Cancer Research Foundation Fellowship, H.L.B. is supported by a CAPES fellowship (Brazil), and A.M. is supported by the Ernst Schering Research Foundation (Germany). This work was supported by an NIH grant to J.Y.J.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Y. J. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, B., Borges, H., Chen, TT. et al. Signal-dependent protection from apoptosis in mice expressing caspase-resistant Rb. Nat Cell Biol 4, 757–765 (2002). https://doi.org/10.1038/ncb853

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing