Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis

Abstract

Members of the Inhibitor of Apoptosis Protein (IAP) family block activation of the intrinsic cell death machinery by binding to and neutralizing the activity of pro-apoptotic caspases. In Drosophila melanogaster, the pro-apoptotic proteins Reaper (Rpr), Grim and Hid (head involution defective) all induce cell death by antagonizing the anti-apoptotic activity of Drosophila IAP1 (DIAP1), thereby liberating caspases. Here, we show that in vivo, the RING finger of DIAP1 is essential for the regulation of apoptosis induced by Rpr, Hid and Dronc. Furthermore, we show that the RING finger of DIAP1 promotes the ubiquitination of both itself and of Dronc. Disruption of the DIAP1 RING finger does not inhibit its binding to Rpr, Hid or Dronc, but completely abrogates ubiquitination of Dronc. Our data suggest that IAPs suppress apoptosis by binding to and targeting caspases for ubiquitination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutations affecting the RING finger of DIAP1 modify rpr- and hid-induced cell death in the fly eye.
Figure 2: RING finger mutations do not affect the binding of Rpr and Hid to DIAP1.
Figure 3: Mutations of the BIR2 domain, but not the RING finger of DIAP1, disrupt binding of Dronc.
Figure 4: DIAP1 contains an E3 ubiquitin protein ligase activity that promotes ubiquitination of both itself and Dronc.

Similar content being viewed by others

References

  1. Meier, P., Finch, A. & Evan, G. Nature 407, 796–801 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Thornberry, N. A. & Lazebnik, Y. Science 281, 1312–1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Alnemri, E. S. J. Cell. Biochem. 64, 33–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Hengartner, M. O. Nature 407, 770–776 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Uren, A. G., Coulson, E. J. & Vaux, D. L. Trends Biochem. Sci. 23, 159–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Deveraux, Q. L. & Reed, J. C. Genes Dev. 13, 239–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A. & Hay, B. A. Cell 98, 453–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Lisi, S., Mazzon, I. & White, K. Genetics 154, 669–678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. EMBO J. 19, 589–597 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goyal, L. Cell 104, 805–808 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Joazeiro, C. A. & Weissman, A. M. Cell 102, 549–552 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Grether, M. E., Abrams, J. M., Agapite, J., White, K. & Steller, H. Genes Dev. 9, 1694–1708 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Hay, B. A., Wassarman, D. A. & Rubin, G. M. Cell 83, 1253–1262 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. White, K., Tahaoglu, E. & Steller, H. Science 271, 805–807 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Bergmann, A., Agapite, J., McCall, K. & Steller, H. Cell 95, 331–341 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Rigaut, G. et al. Nature Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  17. Vucic, D., Kaiser, W. J. & Miller, L. K. Mol. Cell. Biol. 18, 3300–3309 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hawkins, C. J. et al. J. Biol. Chem. 275, 27084–27093 (2000).

    CAS  PubMed  Google Scholar 

  19. Meier, P., Silke, J., Leevers, S. J. & Evan, G. I. EMBO J. 19, 598–611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quinn, L. M. et al. J. Biol. Chem. 275, 40416–40424 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Fenteany, G. & Schreiber, S. L. J. Biol. Chem. 273, 8545–8548 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Science 288, 874–877 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Proc. Natl Acad. Sci. USA 98, 8662–8667 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, H. et al. J. Biol. Chem. 275, 26661–26664 (2000).

    CAS  PubMed  Google Scholar 

  25. Pickart, C. M. Mol. Cell 8, 499–504 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Holley et al. Nature Cell Biol. DOI: 10.1038/ncb798.

  27. Ryoo et al. Nature Cell Biol. DOI: 10.1038/ncb795.

  28. Wing et al. Nature Cell Biol. DOI: 10.1038/ncb800.

  29. Hays et al. Nature Cell Biol. DOI: 10.1038/ncb794.

  30. Yoo et al. Nature Cell Biol. DOI: 10.1038/ncb793.

Download references

Acknowledgements

We wish to thank K. White for the generous gift of anti-DIAP1 antibody, D. Bohmann for the HA–ubiquitin construct and B. Seraphin for the TAP-construct. We thank T. Tenev for technical advice and graphical support and members of the laboratory for discussions. Furthermore, we thank members of the Evan and Downward laboratories for helpful discussions and support. We also thank S. Schneider for critical reading of the manuscript. We apologize to the scientists whose work we could not cite because of space limitations. H.S. is an investigator of the Howard Hughes Medical Institute. Part of this work was supported by National Institutes of Health grant RO1GM60124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Meier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures and table

Figure S1. Characterization of diap1 mutant alleles in S2 cells. (PDF 172 kb)

Figure S2. The DRONC eye phenotype is severely enhanced in flies heterozygous for mutations in the DIAP1 RING finger or mutations that impair DIAP1 binding to DRONC.

Supplementary Table 1. The amino acid changes deduced from the nucleotide sequence of the diap1 gene of homozygous mutant embryos and their genetic properties. for GMR-hid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, R., Goyal, L., Ditzel, M. et al. The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nat Cell Biol 4, 445–450 (2002). https://doi.org/10.1038/ncb799

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing