Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DCAF12 promotes apoptosis and inhibits NF-κB activation by acting as an endogenous antagonist of IAPs

Abstract

Members of the Inhibitor of Apoptosis Protein (IAP) family are essential for cell survival and appear to neutralize the cell death machinery by binding pro-apoptotic caspases. dcaf12 was recently identified as an apoptosis regulator in Drosophila. However, the underlying molecular mechanisms are unknown. Here we revealed that human DCAF12 homolog binds multiple IAPs, including XIAP, cIAP1, cIAP2, and BRUCE, through recognition of BIR domains in IAPs. The pro-apoptotic function of DCAF12 is dependent on its capacity to bind IAPs. In response to apoptotic stimuli, DCAF12 translocates from the nucleus to the cytoplasm, where it blocks the interaction between XIAP and pro-apoptotic caspases to facilitate caspase activation and apoptosis execution. Similarly, DCAF12 suppresses NF-κB activation in an IAP binding-dependent manner. Moreover, DCAF12 acts as a tumor suppressor to restrict the malignant phenotypes of cancer cells. Together, our results suggest that DCAF12 is an evolutionarily conserved IAP antagonist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DCAF12 interacts with multiple IAPs.
Fig. 2: DCAF12 has no impact on IAP proteins stability.
Fig. 3: Identification of the mutual-binding regions of DCAF12 and IAPs.
Fig. 4: DCAF12 promotes apoptosis by blocking the interactions between IAPs and caspases.
Fig. 5: DCAF12 negatively regulates TNFα-induced NF-κB pathway activation.
Fig. 6: DCAF12 translocates from the nucleus to the cytoplasm in response to apoptotic signal.
Fig. 7: DCAF12 suppresses the malignant phenotypes of cancer cells.

Similar content being viewed by others

References

  1. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456–62.

    Article  CAS  PubMed  Google Scholar 

  2. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997;88:347–54.

    Article  CAS  PubMed  Google Scholar 

  3. Birnbaum MJ, Clem RJ, Miller LK. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol. 1994;68:2521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richter BW, Duckett CS. The IAP proteins: caspase inhibitors and beyond. Sci STKE. 2000;2000:pe1.

    Article  CAS  PubMed  Google Scholar 

  5. Verhagen AM, Coulson EJ, Vaux DL. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol. 2001;2:REVIEWS3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell. 2001;104:791–800.

    Article  CAS  PubMed  Google Scholar 

  7. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell. 2001;104:781–90.

    CAS  PubMed  Google Scholar 

  8. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES, et al. Structural basis of caspase-7 inhibition by XIAP. Cell. 2001;104:769–80.

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell. 2001;8:613–21.

    Article  CAS  PubMed  Google Scholar 

  10. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 2000;102:43–53.

    Article  CAS  PubMed  Google Scholar 

  11. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.

    Article  CAS  PubMed  Google Scholar 

  12. Shi Y. A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding. Cell Death Differ. 2002;9:93–5.

    Article  CAS  PubMed  Google Scholar 

  13. Galban S, Duckett CS. XIAP as a ubiquitin ligase in cellular signaling. Cell Death Differ. 2010;17:54–60.

    Article  CAS  PubMed  Google Scholar 

  14. Yang YL, Li XM. The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res. 2000;10:169–77.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar S, Fairmichael C, Longley DB, Turkington RC. The multiple roles of the IAP super-family in cancer. Pharmacol Therapeutics. 2020;214:107610.

    Article  CAS  Google Scholar 

  16. Gyrd-Hansen M, Meier P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer. 2010;10:561–74.

    Article  CAS  PubMed  Google Scholar 

  17. Lu M, Lin SC, Huang Y, Kang YJ, Rich R, Lo YC, et al. XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell. 2007;26:689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005;6:9–20.

    Article  CAS  PubMed  Google Scholar 

  19. Jackson S, Xiong Y. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochemical Sci. 2009;34:562–70.

    Article  CAS  Google Scholar 

  20. Koren I, Timms RT, Kula T, Xu Q, Li MZ, Elledge SJ. The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons. Cell. 2018;173:1622–35 e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ravichandran R, Kodali K, Peng J, Potts PR. Regulation of MAGE-A3/6 by the CRL4-DCAF12 ubiquitin ligase and nutrient availability. EMBO Rep. 2019;20:e47352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Patron LA, Nagatomo K, Eves DT, Imad M, Young K, Torvund M, et al. Cul4 ubiquitin ligase cofactor DCAF12 promotes neurotransmitter release and homeostatic plasticity. J Cell Biol. 2019;218:993–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cho YS, Li S, Wang X, Zhu J, Zhuo S, Han Y, et al. CDK7 regulates organ size and tumor growth by safeguarding the Hippo pathway effector Yki/Yap/Taz in the nucleus. Genes Dev. 2020;34:53–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hwangbo DS, Biteau B, Rath S, Kim J, Jasper H. Control of apoptosis by Drosophila DCAF12. Dev Biol. 2016;413:50–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hao Y, Sekine K, Kawabata A, Nakamura H, Ishioka T, Ohata H, et al. Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat Cell Biol. 2004;6:849–60.

    Article  CAS  PubMed  Google Scholar 

  26. Wajant H, Scheurich P. TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J. 2011;278:862–76.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell. 2010;38:101–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Damgaard RB, Fiil BK, Speckmann C, Yabal M, zur Stadt U, Bekker-Jensen S, et al. Disease-causing mutations in the XIAP BIR2 domain impair NOD2-dependent immune signalling. EMBO Mol Med. 2013;5:1278–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Varfolomeev E, Goncharov T, Maecker H, Zobel K, Kömüves LG, Deshayes K, et al. Cellular inhibitors of apoptosis are global regulators of NF-κB and MAPK activation by members of the TNF family of receptors. Sci Signal. 2012;5:ra22.

    Article  PubMed  CAS  Google Scholar 

  30. Shin SI, Freedman VH, Risser R, Pollack R. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA. 1975;72:4435–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goyal L, McCall K, Agapite J, Hartwieg E, Steller H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 2000;19:589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martins LM, Morrison A, Klupsch K, Fedele V, Moisoi N, Teismann P, et al. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol. 2004;24:9848–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Okada H, Suh WK, Jin J, Woo M, Du C, Elia A, et al. Generation and characterization of Smac/DIABLO-deficient mice. Mol Cell Biol. 2002;22:3509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim K, Kim JM, Kim JS, Choi J, Lee YS, Neamati N, et al. VprBP has intrinsic kinase activity targeting histone H2A and represses gene transcription. Mol Cell. 2013;52:459–67.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Arceci A, Bird K, Mills CA, Choudhury R, Kernan JL, et al. VprBP/DCAF1 regulates the degradation and nonproteolytic activation of the cell cycle transcription factor FoxM1. Mol Cell Biol. 2017;37:e00609–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, et al. Ambra1 regulates autophagy and development of the nervous system. Nature. 2007;447:1121–5.

    Article  CAS  PubMed  Google Scholar 

  37. Hu X, Meng Y, Xu L, Qiu L, Wei M, Su D, et al. Cul4 E3 ubiquitin ligase regulates ovarian cancer drug resistance by targeting the antiapoptotic protein BIRC3. Cell Death Dis. 2009;10:104.

    Article  CAS  Google Scholar 

  38. Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 2018;25:46–55.

    Article  CAS  PubMed  Google Scholar 

  39. Tenev T, Zachariou A, Wilson R, Paul A, Meier P. Jafrac2 is an IAP antagonist that promotes cell death by liberating Dronc from DIAP1. EMBO J. 2002;21:5118–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell. 2003;11:519–27.

    Article  CAS  PubMed  Google Scholar 

  41. Huang Y, Rich RL, Myszka DG, Wu H. Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac. J Biol Chem. 2003;278:49517–22.

    Article  CAS  PubMed  Google Scholar 

  42. Dubrez-Daloz L, Dupoux A, Cartier J. IAPs: more than just inhibitors of apoptosis proteins. Cell Cycle. 2008;7:1036–46.

    Article  CAS  PubMed  Google Scholar 

  43. Liston P, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D, et al. Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat Cell Biol. 2001;3:128–33.

    Article  CAS  PubMed  Google Scholar 

  44. Larisch S, Yi Y, Lotan R, Kerner H, Eimerl S, Tony Parks W, et al. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol. 2000;2:915–21.

    Article  CAS  PubMed  Google Scholar 

  45. Gao K, Zhang Y, Shi Q, Zhang J, Zhang L, Sun H, et al. iASPP-PP1 complex is required for cytokinetic abscission by controlling CEP55 dephosphorylation. Cell Death Dis. 2018;9:528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Mikihiko Naito for providing BRUCE cDNAs. This work was in part supported by the National Natural Science Foundation of China (No. 91957125, 81972396, 81672558 to CW; No. 91954106, 81872109 to KG.; No. 81872260, 81572768 to PZ) the Natural Science Foundation of Shanghai (No. 22ZR1449200 to KG; 22ZR1406600 to CW), the Natural Science Foundation of Shandong Province (No. ZR2021MH212 to LL), the Open Research Fund of State Key Laboratory of Genetic Engineering, Fudan University (No. SKLGE-2111 to KG), the Science and Technology Research Program of Shanghai (No. 9DZ2282100).

Author information

Authors and Affiliations

Authors

Contributions

CW conceived the study. DJ, YC, YW, HS, QS, LZ, XZ, YL, HH, ZL, and CL performed the experiments and data analyses. DJ, YC, PZ, KG, YL, YH, LL, and CW analyzed and interpreted the data. CW wrote and revised the manuscript.

Corresponding authors

Correspondence to Liang Li or Chenji Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, D., Chen, Y., Wang, Y. et al. DCAF12 promotes apoptosis and inhibits NF-κB activation by acting as an endogenous antagonist of IAPs. Oncogene 41, 3000–3010 (2022). https://doi.org/10.1038/s41388-022-02319-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02319-5

Search

Quick links