Leukaemogenesis requires enhanced self-renewal, which is induced by oncogenes. The underlying molecular mechanisms remain incompletely understood. Here, we identified C/D box snoRNAs and rRNA 2′-O-methylation as critical determinants of leukaemic stem cell activity. Leukaemogenesis by AML1-ETO required expression of the groucho-related amino-terminal enhancer of split (AES). AES functioned by inducing snoRNA/RNP formation via interaction with the RNA helicase DDX21. Similarly, global loss of C/D box snoRNAs with concomitant loss of rRNA 2′-O-methylation resulted in decreased leukaemia self-renewal potential. Genomic deletion of either C/D box snoRNA SNORD14D or SNORD35A suppressed clonogenic potential of leukaemia cells in vitro and delayed leukaemogenesis in vivo. We further showed that AML1-ETO9a, MYC and MLL-AF9 all enhanced snoRNA formation. Expression levels of C/D box snoRNAs in AML patients correlated closely with in vivo frequency of leukaemic stem cells. Collectively, these findings indicate that induction of C/D box snoRNA/RNP function constitutes an important pathway in leukaemogenesis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


Primary accessions


  1. 1.

    & Hox genes in hematopoiesis and leukemogenesis. Oncogene 26, 6766–6776 (2007).

  2. 2.

    et al. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science 327, 1650–1653 (2010).

  3. 3.

    et al. The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood 99, 15–23 (2002).

  4. 4.

    et al. Expression of AML1-ETO in human myelomonocytic cells selectively inhibits granulocytic differentiation and promotes their self-renewal. Leukemia 18, 1238–1245 (2004).

  5. 5.

    et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat. Med. 12, 945–949 (2006).

  6. 6.

    et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J. Clin. Invest. 115, 2159–2168 (2005).

  7. 7.

    et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol. Cell Biol. 24, 2890–2904 (2004).

  8. 8.

    et al. AML1/ETO induces self-renewal in hematopoietic progenitor cells via the Groucho-related amino-terminal AES protein. Blood 117, 4328–4337 (2011).

  9. 9.

    et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer cell 17, 249–261 (2010).

  10. 10.

    et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).

  11. 11.

    & Does the ribosome translate cancer? Nat. Rev. Cancer 3, 179–192 (2003).

  12. 12.

    et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456, 971–975 (2008).

  13. 13.

    , , & Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

  14. 14.

    et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat. Cell Biol. 7, 303–310 (2005).

  15. 15.

    et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat. Cell Biol. 7, 311–318 (2005).

  16. 16.

    Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109, 145–148 (2002).

  17. 17.

    et al. Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell 19, 125–137 (2011).

  18. 18.

    et al. Growth defect in Grg5 null mice is associated with reduced Ihh signaling in growth plates. Dev. Dyn. 224, 79–89 (2002).

  19. 19.

    et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457, 51–56 (2009).

  20. 20.

    et al. Regulation of AKT signaling by Id1 controls t(8;21) leukemia initiation and progression. Blood 126, 640–650 (2015).

  21. 21.

    et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 101, 270–277 (2003).

  22. 22.

    et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPα in t(8;21) myeloid leukemia. Nat. Med. 7, 444–451 (2001).

  23. 23.

    , , & The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res. 35, 1452–1464 (2007).

  24. 24.

    et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

  25. 25.

    , & Optimization of ribosome structure and function by rRNA base modification. PLoS ONE 2, e174 (2007).

  26. 26.

    , & MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 10, 301–309 (2010).

  27. 27.

    et al. Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell 17, 165–177 (2015).

  28. 28.

    , , & Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proc. Natl Acad. Sci. USA 109, 413–418 (2012).

  29. 29.

    et al. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518, 249–253 (2015).

  30. 30.

    et al. Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation. Mol. Cell. Biol. 21, 5577–5590 (2001).

  31. 31.

    et al. GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood 127, 2018–2027 (2016).

  32. 32.

    et al. Azacitidine in combination with intensive induction chemotherapy in older patients with acute myeloid leukemia: the AML-AZA trial of the study alliance leukemia. Leukemia 30, 555–561 (2016).

  33. 33.

    et al. Assembly and maturation of the U3 snoRNP in the nucleoplasm in a large dynamic multiprotein complex. Mol. Cell 16, 789–798 (2004).

  34. 34.

    et al. Elevated snoRNA biogenesis is essential in breast cancer. Oncogene 33, 1348–1358 (2014).

  35. 35.

    et al. snoRNAs are a novel class of biologically relevant Myc targets. BMC Biol. 13, 25–41 (2015).

  36. 36.

    et al. Regulation of ribosome biogenesis and protein synthesis controls germline stem cell differentiation. Cell Stem Cell 18, 276–290 (2015).

  37. 37.

    et al. Requirement of rRNA methylation for 80S ribosome assembly on a cohort of cellular internal ribosome entry sites. Mol. Cell. Biol. 31, 4482–4499 (2011).

  38. 38.

    et al. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24, 318–330 (2013).

  39. 39.

    et al. miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell 29, 602–606 (2016).

  40. 40.

    Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

  41. 41.

    & Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

  42. 42.

    & BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

  43. 43.

    et al. Expander: from expression microarrays to networks and functions. Nat. Protoc. 5, 303–322 (2010).

  44. 44.

    et al. FLT3-ITD and TLR9 use Bruton tyrosine kinase to activate distinct transcriptional programs mediating AML cell survival and proliferation. Blood 125, 1936–1947 (2015).

  45. 45.

    et al. PADI4 acts as a coactivator of Tal1 by counteracting repressive histone arginine methylation. Nat. Commun. 5, 3995 (2014).

  46. 46.

    et al. Protein complex-based analysis framework for high-throughput data sets. Sci. Signal. 6, rs5 (2013).

  47. 47.

    et al. Site identification in high-throughput RNA-protein interaction data. Bioinformatics 28, 3013–3020 (2012).

  48. 48.

    et al. MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res. 41, D262–D267 (2013).

  49. 49.

    et al. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS ONE 4, e7147 (2009).

  50. 50.

    et al. RTL-P: a sensitive approach for detecting sites of 2′-O-methylation in RNA molecules. Nucleic Acids Res. 40, e157 (2012).

Download references


We thank T. Gridley for providing Aes straight knockout (Aes−/−) mice. We are grateful to B. Edemir for help with project organization and manuscript preparation. We thank M. Scheller-Wendorff for support of the mice experiments. This work was supported by Deutsche Forschungsgemeinschaft (DFG, MU1328/15-1 and MU1328/9-2), the Deutsche Jose Carreras Leukämie-Stiftung e. V. (DJCLS R10/35f), by a Wilhelm-Roux-Program grant (28/43) of the Medical Faculty, Martin-Luther-University Halle-Wittenberg to CMT and the grants of the federal state of Saxony-Anhalt (P40). N.B. is supported by Wilhelm Sander Stiftung (2014.054.1), Deutsche Krebshilfe (70112282) and ‘Innovative Medical Research’ of the University of Münster Medical School (IMF) (121314 and 111501). C.P. is supported by a Max-Eder grant of the Deutsche Krebshilfe (70111531). The laboratory of R.S. is supported by Deutsche Forschungsgemeinschaft (DFG SL27/7-2). The laboratory of W.E.B. is supported by DFG grant EXC 1003. The work of 20 AML samples with LSC frequencies was supported by the Government of Canada through Genome Canada and the Ministère de l’enseignement supérieur, de la recherche, de la science et de la technologie du Québec through Génome Québec to G.S. and J.H. and by grants from the Cancer Research Network of the Fonds de recherche du Québec-Santé to J.H.

Author information


  1. Department of Hematology and Oncology, University of Halle, Halle 06120, Germany

    • Fengbiao Zhou
    • , Yi Liu
    • , Christian Rohde
    • , Cornelius Pauli
    • , Dennis Gerloff
    • , Chunhong Cui
    • , Stefanie Göllner
    • , Caroline Pabst
    •  & Carsten Müller-Tidow
  2. Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg 69120, Germany

    • Fengbiao Zhou
    • , Yi Liu
    • , Christian Rohde
    • , Stefanie Göllner
    • , Caroline Pabst
    •  & Carsten Müller-Tidow
  3. Institute of Molecular Medicine, University of Halle, Halle 06120, Germany

    • Marcel Köhn
    • , Danny Misiak
    •  & Stefan Hüttelmaier
  4. Department of Medicine A, Hematology and Oncology, University of Muenster, Muenster 48149, Germany

    • Nicole Bäumer
    •  & Wolfgang E. Berdel
  5. Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt Am Main 60590, Germany

    • Thomas Oellerich
    •  & Hubert Serve
  6. Department of Hematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK

    • Thomas Oellerich
  7. German Cancer Research Center and German Cancer, Consortium, Heidelberg 69120, Germany

    • Thomas Oellerich
    •  & Hubert Serve
  8. Division of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen 91058, Germany

    • Maria-Paz Garcia-Cuellar
    •  & Robert Slany
  9. Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, Ohio 44195, USA

    • Jaroslaw P. Maciejewski
    •  & Bartlomiej Przychodzen
  10. Institute of Medical Immunology, University of Halle, Halle 06120, Germany

    • Barbara Seliger
  11. Institute of Medical Informatics, University of Muenster, Muenster 48149, Germany

    • Hans-Ulrich Klein
    • , Christoph Bartenhagen
    •  & Martin Dugas
  12. Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA

    • Hans-Ulrich Klein
  13. Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan

    • Makoto Mark Taketo
  14. Broad Institute, Cambridge, Massachusetts 02142, USA

    • Daneyal Farouq
    • , Schraga Schwartz
    •  & Aviv Regev
  15. Department of Biology, MIT, Cambridge, Massachusetts 02139, USA

    • Aviv Regev
  16. Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA

    • Aviv Regev
  17. Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada

    • Josée Hébert
  18. Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada

    • Josée Hébert
    •  & Guy Sauvageau
  19. Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada

    • Josée Hébert
    •  & Guy Sauvageau
  20. Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3T 1J4, Canada

    • Guy Sauvageau


  1. Search for Fengbiao Zhou in:

  2. Search for Yi Liu in:

  3. Search for Christian Rohde in:

  4. Search for Cornelius Pauli in:

  5. Search for Dennis Gerloff in:

  6. Search for Marcel Köhn in:

  7. Search for Danny Misiak in:

  8. Search for Nicole Bäumer in:

  9. Search for Chunhong Cui in:

  10. Search for Stefanie Göllner in:

  11. Search for Thomas Oellerich in:

  12. Search for Hubert Serve in:

  13. Search for Maria-Paz Garcia-Cuellar in:

  14. Search for Robert Slany in:

  15. Search for Jaroslaw P. Maciejewski in:

  16. Search for Bartlomiej Przychodzen in:

  17. Search for Barbara Seliger in:

  18. Search for Hans-Ulrich Klein in:

  19. Search for Christoph Bartenhagen in:

  20. Search for Wolfgang E. Berdel in:

  21. Search for Martin Dugas in:

  22. Search for Makoto Mark Taketo in:

  23. Search for Daneyal Farouq in:

  24. Search for Schraga Schwartz in:

  25. Search for Aviv Regev in:

  26. Search for Josée Hébert in:

  27. Search for Guy Sauvageau in:

  28. Search for Caroline Pabst in:

  29. Search for Stefan Hüttelmaier in:

  30. Search for Carsten Müller-Tidow in:


F.Z. designed and conducted the experiments, analysed the data and wrote the manuscript. Y.L. and C.P. made the snoRNA knockouts. M.K., D.M. and S.H. analysed snoRNA-seq data. T.O. and H.S. performed mass spectrometry analyses and analysed the data. C.P. helped with NSG mice experiments. M.-P.G.-C. and R.S. isolated nascent RNA. B.P., C.R., J.P.M., H.-U.K. C.B. and M.D. analysed NGS data. M.M.T. provided the Aesf/f mice. D.F., S.S. and A.R. performed pseudouridylation-sequencing. D.G., C.P., N.B., C.C., S.G., W.E.B. and B.S. discussed the results and advised on research. W.E.B. provided patient samples from the AML-AZA clinical study. J.H. and G.S. provided human AML specimens with determined LSC frequency. C.M.-T. designed and conceptualized the overall research, analysed the data, and wrote the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Carsten Müller-Tidow.

Integrated supplementary information

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

Excel files

  1. 1.

    Supplementary Table 1

    Supplementary Information

  2. 2.

    Supplementary Table 2

    Supplementary Information

  3. 3.

    Supplementary Table 3

    Supplementary Information

  4. 4.

    Supplementary Table 4

    Supplementary Information

  5. 5.

    Supplementary Table 5

    Supplementary Information

  6. 6.

    Supplementary Table 6

    Supplementary Information

  7. 7.

    Supplementary Table 7

    Supplementary Information

About this article

Publication history






Further reading