Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell–matrix signals specify bone endothelial cells during developmental osteogenesis

Abstract

Blood vessels in the mammalian skeletal system control bone formation and support haematopoiesis by generating local niche environments. While a specialized capillary subtype, termed type H, has been recently shown to couple angiogenesis and osteogenesis in adolescent, adult and ageing mice, little is known about the formation of specific endothelial cell populations during early developmental endochondral bone formation. Here, we report that embryonic and early postnatal long bone contains a specialized endothelial cell subtype, termed type E, which strongly supports osteoblast lineage cells and later gives rise to other endothelial cell subpopulations. The differentiation and functional properties of bone endothelial cells require cell–matrix signalling interactions. Loss of endothelial integrin β1 leads to endothelial cell differentiation defects and impaired postnatal bone growth, which is, in part, phenocopied by endothelial cell-specific laminin α5 mutants. Our work outlines fundamental principles of vessel formation and endothelial cell differentiation in the developing skeletal system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental angiogenesis and EC subtypes in long bone.
Figure 2: Identification of a distinct EC subpopulation in early bone development.
Figure 3: Characterization of EC subpopulations in developing long bone.
Figure 4: Hierarchy and molecular properties of bone capillary ECs.
Figure 5: Altered bone vasculature in EC-specific Itgb1 mutant mice.
Figure 6: Bone defects in EC-specific Itgb1 mutant mice.
Figure 7: Defects in Apln-CreER-generated Itgb1 mutants.
Figure 8: Phenotypes of extracellular matrix mutants.

Similar content being viewed by others

References

  1. Kronenberg, H. M. Developmental regulation of the growth plate. Nature 423, 332–336 (2003).

    CAS  PubMed  Google Scholar 

  2. Long, F. & Ornitz, D. M. Development of the endochondral skeleton. Cold Spring Harb. Perspect. Biol. 5, a008334 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Eshkar-Oren, I. et al. The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf. Development 136, 1263–1272 (2009).

    CAS  PubMed  Google Scholar 

  4. Conen, K. L., Nishimori, S., Provot, S. & Kronenberg, H. M. The transcriptional cofactor Lbh regulates angiogenesis and endochondral bone formation during fetal bone development. Dev. Biol. 333, 348–358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Maes, C. et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech. Dev. 111, 61–73 (2002).

    CAS  PubMed  Google Scholar 

  6. Maes, C. et al. Increased skeletal VEGF enhances β-catenin activity and results in excessively ossified bones. EMBO J. 29, 424–441 (2010).

    CAS  PubMed  Google Scholar 

  7. Maes, C. et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 19, 329–344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding, B. S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97–102 (2014).

    PubMed  Google Scholar 

  9. Ding, B. S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468, 310–315 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ding, B. S. et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147, 539–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ramasamy, S. K., Kusumbe, A. P., Wang, L. & Adams, R. H. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507, 376–380 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu, J. et al. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 343, 416–419 (2014).

    CAS  PubMed  Google Scholar 

  13. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie, H. et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 20, 1270–1278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Alford, A. I., Kozloff, K. M. & Hankenson, K. D. Extracellular matrix networks in bone remodeling. Int. J. Biochem. Cell Biol. 65, 20–31 (2015).

    CAS  PubMed  Google Scholar 

  16. Marie, P. J., Hay, E. & Saidak, Z. Integrin and cadherin signaling in bone: role and potential therapeutic targets. Trends Endocrinol. Metab. 25, 567–575 (2014).

    CAS  PubMed  Google Scholar 

  17. Olsen, B. R., Reginato, A. M. & Wang, W. Bone development. Annu. Rev. Cell Dev. Biol. 16, 191–220 (2000).

    CAS  PubMed  Google Scholar 

  18. Humphries, J. D., Byron, A. & Humphries, M. J. Integrin ligands at a glance. J. Cell Sci. 119, 3901–3903 (2006).

    CAS  PubMed  Google Scholar 

  19. Barczyk, M., Carracedo, S. & Gullberg, D. Integrins. Cell Tissue Res. 339, 269–280 (2010).

    CAS  PubMed  Google Scholar 

  20. Lei, L. et al. Endothelial expression of β1 integrin is required for embryonic vascular patterning and postnatal vascular remodeling. Mol. Cell Biol. 28, 794–802 (2008).

    CAS  PubMed  Google Scholar 

  21. Carlson, T. R., Hu, H., Braren, R., Kim, Y. H. & Wang, R. A. Cell-autonomous requirement for β1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development 135, 2193–2202 (2008).

    CAS  PubMed  Google Scholar 

  22. Tanjore, H., Zeisberg, E. M., Gerami-Naini, B. & Kalluri, R. Beta1 integrin expression on endothelial cells is required for angiogenesis but not for vasculogenesis. Dev. Dyn. 237, 75–82 (2008).

    CAS  PubMed  Google Scholar 

  23. Zovein, A. C. et al. Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev. Cell 18, 39–51 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamamoto, H. et al. Integrin β1 controls VE-cadherin localization and blood vessel stability. Nat. Commun. 6, 6429 (2015).

    CAS  PubMed  Google Scholar 

  25. Zelzer, E. et al. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129, 1893–1904 (2002).

    CAS  PubMed  Google Scholar 

  26. Tammela, T. et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat. Cell Biol. 13, 1202–1213 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Benedito, R. et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484, 110–114 (2012).

    CAS  PubMed  Google Scholar 

  28. Lohela, M., Bry, M., Tammela, T. & Alitalo, K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr. Opin. Cell Biol. 21, 154–165 (2009).

    CAS  PubMed  Google Scholar 

  29. Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling—in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006).

    CAS  PubMed  Google Scholar 

  30. Zarkada, G., Heinolainen, K., Makinen, T., Kubota, Y. & Alitalo, K. VEGFR3 does not sustain retinal angiogenesis without VEGFR2. Proc. Natl Acad. Sci. USA 112, 761–766 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakayama, M. et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat. Cell Biol. 15, 249–260 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Latonen, L., Taya, Y. & Laiho, M. UV-radiation induces dose-dependent regulation of p53 response and modulates p53-HDM2 interaction in human fibroblasts. Oncogene 20, 6784–6793 (2001).

    CAS  PubMed  Google Scholar 

  33. Kikkawa, Y. & Miner, J. H. Review: Lutheran/B-CAM: a laminin receptor on red blood cells and in various tissues. Connect. Tissue Res. 46, 193–199 (2005).

    CAS  PubMed  Google Scholar 

  34. Reznikoff, C. A., Brankow, D. W. & Heidelberger, C. Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res. 33, 3231–3238 (1973).

    CAS  PubMed  Google Scholar 

  35. Liu, Q. et al. Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat. Commun. 6, 6020 (2015).

    CAS  PubMed  Google Scholar 

  36. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    CAS  PubMed  Google Scholar 

  37. Luo, W., Friedman, M. S., Shedden, K., Hankenson, K. D. & Woolf, P. J. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics 10, 161 (2009).

    PubMed  PubMed Central  Google Scholar 

  38. Yousif, L. F., Di Russo, J. & Sorokin, L. Laminin isoforms in endothelial and perivascular basement membranes. Cell Adh. Migr. 7, 101–110 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    CAS  PubMed  Google Scholar 

  40. Raghavan, S., Bauer, C., Mundschau, G., Li, Q. & Fuchs, E. Conditional ablation of β1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J. Cell Biol. 150, 1149–1160 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Miner, J. H., Cunningham, J. & Sanes, J. R. Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin α5 chain. J. Cell Biol. 143, 1713–1723 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Song, J. et al. Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival. Proc. Natl Acad. Sci. USA 110, E2915–E2924 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sorokin, L. M. et al. Developmental regulation of the laminin α5 chain suggests a role in epithelial and endothelial cell maturation. Dev. Biol. 189, 285–300 (1997).

    CAS  PubMed  Google Scholar 

  44. Scoazec, J. Y., Racine, L., Couvelard, A., Flejou, J. F. & Feldmann, G. Endothelial cell heterogeneity in the normal human liver acinus: in situ immunohistochemical demonstration. Liver 14, 113–123 (1994).

    CAS  PubMed  Google Scholar 

  45. Rajotte, D. et al. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest. 102, 430–437 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Scott, R. P. & Quaggin, S. E. Review series: the cell biology of renal filtration. J. Cell Biol. 209, 199–210 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Molema, G. & Aird, W. C. Vascular heterogeneity in the kidney. Semin. Nephrol. 32, 145–155 (2012).

    CAS  PubMed  Google Scholar 

  48. Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    CAS  PubMed  Google Scholar 

  49. Culver, J. C., Vadakkan, T. J. & Dickinson, M. E. A specialized microvascular domain in the mouse neural stem cell niche. PLoS One 8, e53546 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gumbiner, B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996).

    CAS  PubMed  Google Scholar 

  51. Danen, E. H. & Sonnenberg, A. Integrins in regulation of tissue development and function. J. Pathol. 201, 632–641 (2003).

    CAS  PubMed  Google Scholar 

  52. Felcht, M. et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J. Clin. Invest. 122, 1991–2005 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hakanpaa, L. et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat. Commun. 6, 5962 (2015).

    CAS  PubMed  Google Scholar 

  54. Emre, Y. & Imhof, B. A. Matricellular protein CCN1/CYR61: a new player in inflammation and leukocyte trafficking. Semin. Immunopathol. 36, 253–259 (2014).

    CAS  PubMed  Google Scholar 

  55. Ivaska, J. & Heino, J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu. Rev. Cell Dev. Biol. 27, 291–320 (2011).

    CAS  PubMed  Google Scholar 

  56. Forlino, A., Cabral, W. A., Barnes, A. M. & Marini, J. C. New perspectives on osteogenesis imperfecta. Nat. Rev. Endocrinol. 7, 540–557 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tosi, L. L. & Warman, M. L. Mechanistic and therapeutic insights gained from studying rare skeletal diseases. Bone 76, 67–75 (2015).

    PubMed  Google Scholar 

  58. Tranquilli Leali, P. et al. Bone fragility: current reviews and clinical features. Clin. Cases Miner. Bone Metab. 6, 109–113 (2009).

    PubMed  Google Scholar 

  59. Tian, X. et al. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 23, 1075–1090 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kisanuki, Y. Y. et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230–242 (2001).

    CAS  PubMed  Google Scholar 

  61. Thyboll, J. et al. Deletion of the laminin α4 chain leads to impaired microvessel maturation. Mol. Cell Biol. 22, 1194–1202 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Liaw, L. et al. Altered wound healing in mice lacking a functional osteopontin gene (spp1). J. Clin. Invest. 101, 1468–1478 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  PubMed  Google Scholar 

  65. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Wold, S., Esbensen, K. & Geladi, P. Principal component analysis. Chemometr. Intel. Lab. Syst. 2, 37–52 (1987).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank H.-W. Jeong for his support in RNA-seq experiments, K. Kato for experimental guidance, and M. Stehling for expert advice in flow cytometry experiments. The Max Planck Society, the University of Muenster, the Cells in Motion (CiM) graduate school, the DFG cluster of excellence ‘Cells in Motion’ (L.S., J.M.V. and R.H.A), and the European Research Council (AdG 339409 AngioBone) have supported this study.

Author information

Authors and Affiliations

Authors

Contributions

U.H.L., M.E.P., J.M.V. and R.H.A. designed the study. R.E.-G., A.S. and J.M.V. performed bioinformatics analyses, M.G.B. the two-photon microscopy, K.K.S. the MG132 inhibition experiments, J.M.K. the spheroid assays, and A.P.K. the ELISA experiments. A.P.K. also developed the FACS protocol for the isolation of bone ECs. J.D.R. and L.S. provided Lama4 and 5 mutant tissues, B.Z. the Apln-CreER mice. All other experiments were performed by U.H.L.; U.H.L., J.M.V. and R.H.A. wrote the manuscript.

Corresponding author

Correspondence to Ralf H. Adams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Long bone development and vascularization.

(a) Emcn (red) immunostained embryonic hindlimb sections at the indicated developmental stages. Nuclei, Hoechst (blue). (b) Overview (left) and high magnification images of P10 wild-type femur stained for Emcn (red). Nuclei, Hoechst (blue). Lines mark metaphysis (mp, orange) with columnar vessels, diaphysis (dp, green) containing highly branched sinusoidal vessels, and the transition zone (tz, blue) interconnecting metaphyseal and diaphyseal vessels. (c) Tile scan confocal images of Osterix-immunostained (green) femoral sections at the indicated developmental stages.

Supplementary Figure 2 Gene expression analysis of the bone vasculature.

(a) MA-plots of differentially regulated genes in P6 bone EC subpopulations. The x-axis represents the mean normalized counts and the y-axis shows the log2 fold change between EC subtypes. Differentially regulated genes are represented by red colored points (FDR-adjusted P-value < 0.01 and absolute log2 fold change <1). Data points outside of the range of the y-axis are represented as triangles. (b) Experimental validation of differentially regulated genes by RT-qPCR. Pairwise comparison of gene expression by RT-qPCR and RNA-seq in DESeq2 between different conditions (E versus L, H versus L and E versus H). The correlation coefficients are 0.98, 0.93 and 0.90. Data represents mean ± s.e.m. (n = 3 for RNA-seq and n = 3 for qPCRs; n represents individual experiments). Statistics source data are shown in Supplementary Table 6 (c,d) Sections of wild-type femur at the indicated developmental stages stained for VEGFR2 (c, white) or VEGFR3 (d, white). Dashed lines mark area of high/low staining. (e,f) Immunostaining for VEGFR2 (e, green) or VEGFR3 (f, green) on femoral sections of 3-week-old wild-type mice after 3 h of vehicle (DMSO) or proteasome inhibitor (MG132) treatment. Nuclei, DAPI (blue). Note strongly increased VEGFR2 and VEGFR3 signals in metaphyseal ECs but not in the diaphysis after MG132.

Supplementary Figure 3 Bone vessel subtypes and their osteogenic potential.

(a) Graph illustrating expression of selected genes in type E endothelium relative to type L or type H ECs, respectively. Data based on RPKM values obtained from RNA-seq of sorted cells at P6. Data represents mean ± s.e.m. (n = 3). Statistics source data are shown in Supplementary Table 6 (b) Longitudinal section of E16.5 femur stained for Emcn (red) and Caveolin 1 (green). White arrowheads indicate double positive vessels. (c) Transverse section of P6 mouse femur stained for Caveolin 1 (green). Nuclei, Hoechst (blue). White arrowheads mark Caveolin 1-positive vessels in endosteum and compact bone. (d) Light microscopic appearance of spheroids at day 1 and day 7 of culture. Note disaggregation of cells in the presence of type L ECs. (e) Visualization of DiI-labeled bone ECs (arrowheads) in C3H10T1/2 spheroids day 1 and day 7 of culture. Remodelling of C3H10T1/2 spheroids (formation of internal cavities) was induced by type H and E ECs but not by type L ECs or in absence of ECs. Nuclei, DAPI (blue).

Supplementary Figure 4 Hierarchy of EC subtypes and cell-matrix interactions.

(ac) Overview pictures of femoral sections from Apln-CreER R26-mT/mG mice treated with 4-OHT at E15.5 (a), P0 (b) or P6 (c) and analysis at the indicated stages. Note colocalization of GFP + (green) cells and Emcn + (red) capillaries. Insets in the rightmost panel of (a) show higher magnifications of metaphysis (top) and diaphysis (bottom) at P6. Arrows in (c) indicate expansion of GFP + vessels into the marrow cavity. (d) Expression of selected matrix molecule transcripts identified by RNA sequencing of sorted P6 type L (green), type H (orange) and type E (blue) ECs. Data represents mean ± s.e.m. (n = 3 independent experiments). (e) Expression (RNA-seq) of transcripts encoding integrin α subunits in type L, type H and type E ECs. Data represents mean ± s.e.m. (n = 3 independent experiments). (f) RNA-seq results for Itgb1 transcript expression in bone ECs at P6. Data represents mean ± s.e.m. (n = 3 independent experiements). (g) RT-qPCR analysis of Itgb1 expression in P21 type L (green) and type H (orange) ECs. Data represents mean ± s.e.m. (n = 3 independent experiments). Statistics source data are shown in Supplementary Table 6 (h) Confocal images showing Emcn (red) and integrin β1 (white) protein expression in the P21 femoral metaphysis. Arrowheads mark endothelial integrin β1 signal. (i) Confocal images of integrin β1 (white), Osterix (green) and CD45 (red) staining in wild-type P21 metaphysis and diaphysis. (j) Maximum intensity projection confocal images of 3 week-old femoral metaphysis immunostained for Emcn (red) and Laminin α4, Laminin α5, Fibronectin, Collagen 1 or Osteopontin (white). Arrowheads mark endothelial expression of matrix proteins.

Supplementary Figure 5 Bone phenotype of EC-specific Itgb1 mutant mice.

(a) Scheme showing the time points of tamoxifen administration and analysis for the Itgb1iΔEC mutant mice. (b) Tile scan overview and high magnification images of femur from P21 Cdh5-CreERT2 R26-mT/mG mice treated with tamoxifen from P10 to P12. GFP signal is strictly confined to endothelium. ECs, Emcn (red). (c) Quantitative RT-qPCR analysis of Itgb1 expression in sorted bone ECs from P21 Itgb1iΔEC mutants and Cre-negative littermate controls (P < 0.001, two-tailed unpaired t-test). Data represents mean ± s.e.m. (n = 6 mice per group). (d) Picture of 3 week-old Itgb1iΔEC mutant and control littermate. Chart shows reduction of Itgb1iΔEC mutant body weight relative to control (P < 0.001, two-tailed unpaired t-test). Data represents mean ± s.e.m. (n = 10 mice per group). (e) Freshly dissected P21 Itgb1iΔEC and littermate control femurs. Ruler indicates length in centimeters. Chart shows length of femurs in millimeters (P = 0.028, two-tailed unpaired t-test). Data represents mean ± s.e.m. (n = 6 mice per group). (f) Tile scan confocal images of 3 week-old Itgb1iΔEC and control femurs stained for Emcn (red). (g) Confocal images of αSMA (red) staining in Itgb1iΔEC mice and littermate controls. Dashed line indicates border to adjacent growth plate (top). (h) Flow cytometry analysis of type L ECs per total ECs. Data represents mean ± s.e.m. (n = 16), (P < 0.001, two-tailed unpaired t-test). (i) Quantitative analysis of proliferating (EdU+) type L ECs per total type L ECs (P = 0.558, two-tailed unpaired t-test). Data represents mean ± s.e.m. (n = 7 mice per group). (j,k) Maximum intensity projections of Itgb1iΔEC and Cre- littermate controls femoral sections stained for Pimonidazole (green) (j) or phospho-ERK1/2 (pERJK1/2, green) (k). Nuclei, Hoechst (blue). Note reduction of the hypoxia-free zone (arrows) and of pERK1/2 signal in the Itgb1iΔEC metaphysis.

Supplementary Figure 6 Analysis of EC-specific Itgb1 mutant bone.

(a,b) Maximum intensity projections of Collagen 1 (a, white) and Osteopontin (b, white) immunostainings in 3 week-old Itgb1iΔEC and control femur. (c) 2-photon-generated second harmonic generation signal (white) in femoral sections of 3 week-old Itgb1iΔEC mice and littermate controls. (d,e) Immunostaining for Calcitonin receptor (d, green) or TRAP (e, red) in 3 week-old Itgb1iΔEC and control femur. Nuclei, Hoechst (blue). (f) Analysis of serum parathyroid hormone (PTH) and calcitonin levels in Itgb1iΔEC mutants and Cre- littermate controls. Data represent mean ± s.e.m (n = 5 mice per group) (P = 0.80 for PTH and P = 0.53 for calcitonin, two-tailed unpaired t-test).

Supplementary Figure 7 Apln-CreER-controlled Itgb1 mutants.

(a) Scheme showing the time points of tamoxifen administration and analysis for Apln-CreER R26-mT/mG and Itgb1iΔApln mice. (b) Overview of P10 femur of Apln-CreER R26-mT/mG mice without tamoxifen-induced recombination. Note absence of GFP+ cells (green). Nuclei, Hoechst (blue). (c,d) Overview and high magnification confocal images of GFP signal (green) and Emcn staining (red) in femur, metaphysis and endosteum of Apln-CreER R26-mT/mG mice P13 (c) and P21 (d). Nuclei, Hoechst (blue). (e) Body weight of Itgb1iΔApln mutants relative to Cre- littermate controls. Data represents mean ± s.e.m. (n = 9) (P < 0.001, unpaired two-tailed t-test). (f) Quantitation of Itgb1iΔApln and Cre- littermate control femoral length. Data represents mean ± s.e.m. (n = 9) (P < 0.001, unpaired two-tailed t-test). (g) Representative 3D reconstruction from μCT measurements of 3 week-old Itgb1iΔApln and littermate control tibial metaphysis. (h) Diagrams represent bone parameters measured in μCT analyses: bone volume/total volume (BV/TV) in percentage, trabeculae number in 1 per millimeter, trabecular thickness in millimeters, and trabecular separation in millimeters. Data represent mean ± s.e.m. (n = 6 controls and 4 mutants), (P-values determined by two-tailed unpaired t-test). Statistics source data are shown in Supplementary Table 6 (i) Confocal images of TRAP immunosignal (green) in 3 week-old control or Itgb1iΔApln femur. Nuclei, Hoechst (blue).

Supplementary Figure 8 Characterization of matrix molecule mutants.

(a) High magnification confocal images of Emcn (red) staining in femoral metaphysis of Lama4KO and wild-type control mice. Dashed line indicates border to adjacent growth plate. (b,d,e) Confocal images of VEGFR3 immunosignal (white) in 3 week-old control and Lama4KO (b), Spp1KO (d) or Lama5ΔEC (e) femur. Dashed lines indicate upper/lower borders of metaphysis containing columnar vessels with low VEGFR3 signal. (c) Osterix (green) stained sections of 3 week-old wild-type control and Lama4KO femur. Dashed lines indicate upper/lower borders of trabecular region. (f) 2-photon-generated second harmonic generation signal (white) in femoral sections of 3 week-old Lama5ΔEC mice and littermate controls. (g) Quantitation of body weight of Lama5ΔEC mutant mice relative to Cre- littermate controls. Data represents mean ± s.e.m. (n = 13) (P = 0.46, unpaired two-tailed t-test). (h) Bar chart illustrating femoral length of Lama5ΔEC mutant mice and Cre- littermate controls. Data represents mean ± s.e.m. (n = 13) (P = 0.04, unpaired two-tailed t-test). (i) Representative 3D reconstruction from μCT measurements of 3 week-old Lama5ΔEC and littermate control tibial metaphysis. (j) Bone parameters measured in μCT analyses: bone volume/total volume (BV/TV) in percentage, trabeculae number in 1 per millimeter, trabecular thickness in millimeters, and trabecular separation in millimeters. Data represent mean ± s.e.m. (n = 4 controls and 3 mutants), (P-values determined by two-tailed unpaired t-test). Statistics source data are shown in Supplementary Table 6

Supplementary information

Supplementary Information

Supplementary Information (PDF 12146 kb)

Supplementary Table 1

Supplementary Information (XLSX 14 kb)

Supplementary Table 2

Supplementary Information (XLSX 14 kb)

Supplementary Table 3

Supplementary Information (XLSX 403 kb)

Supplementary Table 4

Supplementary Information (XLSX 556 kb)

Supplementary Table 5

Supplementary Information (XLSX 198 kb)

Supplementary Table 6

Supplementary Information (XLSX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langen, U., Pitulescu, M., Kim, J. et al. Cell–matrix signals specify bone endothelial cells during developmental osteogenesis. Nat Cell Biol 19, 189–201 (2017). https://doi.org/10.1038/ncb3476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing