Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis

A Corrigendum to this article was published on 01 June 2011

Abstract

E-cadherin plays a pivotal role in epithelial morphogenesis. It controls the intercellular adhesion required for tissue cohesion and anchors the actomyosin-driven tension needed to change cell shape. In the early Drosophila embryo, Myosin-II (Myo-II) controls the planar polarized remodelling of cell junctions and tissue extension. The E-cadherin distribution is also planar polarized and complementary to the Myosin-II distribution. Here we show that E-cadherin polarity is controlled by the polarized regulation of clathrin- and dynamin-mediated endocytosis. Blocking E-cadherin endocytosis resulted in cell intercalation defects. We delineate a pathway that controls the initiation of E-cadherin endocytosis through the regulation of AP2 and clathrin coat recruitment by E-cadherin. This requires the concerted action of the formin Diaphanous (Dia) and Myosin-II. Their activity is controlled by the guanine exchange factor RhoGEF2, which is planar polarized and absent in non-intercalating regions. Finally, we provide evidence that Dia and Myo-II control the initiation of E-cadherin endocytosis by regulating the lateral clustering of E-cadherin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polarization of the clathrin endocytic machinery at adherens junctions.
Figure 2: E-cad endocytosis controls its planar polarized distribution.
Figure 3: Blocking endocytosis affects junction remodelling.
Figure 4: Dia and Scar control different steps of E-cad endocytosis.
Figure 5: Dia and Myosin-II control clathrin and AP2 enrichment at adherens junctions.
Figure 6: Spatial control of E-cad endocytosis by RhoGEF2.
Figure 7: IgG-induced E-cad clustering forces CME.
Figure 8: Model.

Similar content being viewed by others

References

  1. Yamada, S., Pokutta, S., Drees, F., Weis, W. I. & Nelson, W. J. Deconstructing the cadherin–catenin–actin complex. Cell 123, 889–901 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gates, J. & Peifer, M. Can 1000 reviews be wrong? Actin, α-Catenin, and adherens junctions. Cell 123, 769–772 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Cavey, M. & Lecuit, T. Molecular bases of cell–cell junctions stability and dynamics. Cold Spring Harb. Perspect. Biol. 1, a002998 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nishimura, T. & Takeichi, M. Remodelling of the adherens junctions during morphogenesis. Curr. Top. Dev. Biol. 89, 33–54 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8, 633–644 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Quintin, S., Gally, C. & Labouesse, M. Epithelial morphogenesis in embryos: asymmetries, motors and brakes. Trends Genet. 24, 221–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Classen, A. K., Anderson, K. I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–817 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Farhadifar, R., Roper, J. C., Aigouy, B., Eaton, S. & Julicher, F. The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial–mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Dawes-Hoang, R. E. et al. Folded gastrulation, cell shape change and the control of myosin localization. Development 132, 4165–4178 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315, 384–386 (2007).

    Article  PubMed  Google Scholar 

  12. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin–myosin network drive apical constriction. Nature 457, 495–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Blankenship, J. T., Backovic, S. T., Sanny, J. S., Weitz, O. & Zallen, J. A. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Cavey, M., Rauzi, M., Lenne, P. F. & Lecuit, T. A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 453, 751–756 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Rauzi, M., Verant, P., Lecuit, T. & Lenne, P. F. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10, 1401–1410 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez-Gonzalez, R., Simoes Sde, M., Roper, J. C., Eaton, S. & Zallen, J. A. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17, 736–743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rauzi, M., Lenne, P. F. & Lecuit, T. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468, 1110–1114 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Irvine, K. D. & Wieschaus, E. Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120, 827–841 (1994).

    CAS  PubMed  Google Scholar 

  20. Simoes Sde, M. et al. Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev. Cell 19, 377–388 (2010).

    Article  PubMed  Google Scholar 

  21. Perrais, D. & Merrifield, C. J. Dynamics of endocytic vesicle creation. Dev. Cell 9, 581–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 7, 404–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Georgiou, M., Marinari, E., Burden, J. & Baum, B. Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr. Biol. 18, 1631–1638 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Harris, K. P. & Tepass, U. Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis. J. Cell Biol. 183, 1129–1143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leibfried, A., Fricke, R., Morgan, M. J., Bogdan, S. & Bellaiche, Y. Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway regulating E-cadherin endocytosis. Curr. Biol. 18, 1639–1648 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Afshar, K., Stuart, B. & Wasserman, S. A. Functional analysis of the Drosophila diaphanous FH protein in early embryonic development. Development 127, 1887–1897 (2000).

    CAS  PubMed  Google Scholar 

  27. Barrett, K., Leptin, M. & Settleman, J. The Rho GTPase and a putative RhoGEF mediate a signalling pathway for the cell shape changes in Drosophila gastrulation. Cell 91, 905–915 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Grosshans, J. et al. RhoGEF2 and the formin Dia control the formation of the furrow canal by directed actin assembly during Drosophila cellularisation. Development 132, 1009–1020 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Hacker, U. & Perrimon, N. DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev. 12, 274–284 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Palacios, F., Tushir, J. S., Fujita, Y. & D’Souza-Schorey, C. Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell–cell adhesion during epithelial to mesenchymal transitions. Mol. Cell Biol. 25, 389–402 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Troyanovsky, R. B., Sokolov, E. P. & Troyanovsky, S. M. Endocytosis of cadherin from intracellular junctions is the driving force for cadherin adhesive dimer disassembly. Mol. Biol. Cell 17, 3484–3493 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gonzalez-Gaitan, M. & Jackle, H. Role of Drosophila α -adaptin in presynaptic vesicle recycling. Cell 88, 767–776 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Sorkin, A. Cargo recognition during clathrin-mediated endocytosis: a team effort. Curr. Opin. Cell Biol. 16, 392–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Sever, S. Dynamin and endocytosis. Curr. Opin. Cell Biol. 14, 463–467 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Pilot, F., Philippe, J. M., Lemmers, C. & Lecuit, T. Spatial control of actin organization at adherens junctions by a synaptotagmin-like protein Btsz. Nature 442, 580–584 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Harris, T. J. & Peifer, M. Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila. J. Cell Biol. 167, 135–147 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sapir, A., Schweitzer, R. & Shilo, B. Z. Sequential activation of the EGF receptor pathway during Drosophila oogenesis establishes the dorsoventral axis. Development 125, 191–200 (1998).

    CAS  PubMed  Google Scholar 

  38. Jekely, G., Sung, H. H., Luque, C. M. & Rorth, P. Regulators of endocytosis maintain localized receptor tyrosine kinase signalling in guided migration. Dev. Cell 9, 197–207 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, L. H., Rothberg, K. G. & Anderson, R. G. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol. 123, 1107–1117 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Blanchard, E. et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J. Virol. 80, 6964–6972 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kanerva, A. et al. Chlorpromazine and apigenin reduce adenovirus replication and decrease replication associated toxicity. J. Gene Med. 9, 3–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Kasprowicz, J. et al. Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. J. Cell Biol. 182, 1007–1016 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12, 533–542 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Lanzetti, L. Actin in membrane trafficking. Curr. Opin. Cell Biol. 19, 453–458 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Bertet, C., Rauzi, M. & Lecuit, T. Repression of Wasp by JAK/STAT signalling inhibits medial actomyosin network assembly and apical cell constriction in intercalating epithelial cells. Development 136, 4199–4212 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Romero, S. et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Homem, C. C. & Peifer, M. Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behaviour during morphogenesis. Development 135, 1005–1018 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Pellegrin, S. & Mellor, H. Actin stress fibres. J. Cell Sci. 120, 3491–3499 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Nakayama, M. et al. Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. Dev. Cell 14, 205–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Winter, C. G. et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signalling to the actin cytoskeleton. Cell 105, 81–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alberts, A. S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. 276, 2824–2830 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Nikolaidou, K. K. & Barrett, K. A Rho GTPase signalling pathway is used reiteratively in epithelial folding and potentially selects the outcome of Rho activation. Curr. Biol. 14, 1822–1826 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Padash Barmchi, M., Rogers, S. & Hacker, U. DRhoGEF2 regulates actin organization and contractility in the Drosophila blastoderm embryo. J. Cell Biol. 168, 575–585 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mulinari, S., Barmchi, M. P. & Hacker, U. DRhoGEF2 and diaphanous regulate contractile force during segmental groove morphogenesis in the Drosophila embryo. Mol. Biol. Cell 19, 1883–1892 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murphy, A. M. & Montell, D. J. Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J. Cell Biol. 133, 617–630 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Magie, C. R., Meyer, M. R., Gorsuch, M. S. & Parkhurst, S. M. Mutations in the Rho1 small GTPase disrupt morphogenesis and segmentation during early Drosophila development. Development 126, 5353–5364 (1999).

    CAS  PubMed  Google Scholar 

  59. Tkachenko, E., Lutgens, E., Stan, R. V. & Simons, M. Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan-4-dependent activation of Rac1 and a Cdc42-dependent macropinocytic pathway. J. Cell Sci. 117, 3189–3199 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Schneider, A. et al. Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J. Neurosci. 28, 2874–2882 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Collins, R. F. et al. Uptake of oxidized low density lipoprotein by CD36 occurs by an actin-dependent pathway distinct from macropinocytosis. J. Biol. Chem. 284, 30288–30297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ledbetter, J. A., June, C. H., Grosmaire, L. S. & Rabinovitch, P. S. Crosslinking of surface antigens causes mobilization of intracellular ionized calcium in T lymphocytes. Proc. Natl Acad. Sci. USA 84, 1384–1388 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miyamoto, S., Akiyama, S. K. & Yamada, K. M. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267, 883–885 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Levenberg, S., Katz, B. Z., Yamada, K. M. & Geiger, B. Long-range and selective autoregulation of cell–cell or cell–matrix adhesions by cadherin or integrin ligands. J. Cell Sci. 111 (Pt 3), 347–357 (1998).

    Google Scholar 

  65. Garcia-Garcia, E. & Rosales, C. Signal transduction during Fc receptor-mediated phagocytosis. J. Leukoc. Biol. 72, 1092–1108 (2002).

    CAS  PubMed  Google Scholar 

  66. Goswami, D. et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135, 1085–1097 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Mostowy, S. & Cossart, P. Cytoskeleton rearrangements during Listeria infection: clathrin and septins as new players in the game. Cell. Motil. Cytoskeleton 66, 816–823 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat. Cell Biol. 4, 222–231 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all of those who generously provided us with reagents, especially H. Chang, M. Freeman, M. Gonzalez-Gaitan, J. Grosshans, U. Häcker, R. Karess, D. Kiehart, K. Klaembt, A. C. Martin, E. Wieschaus, H. Oda, M. Peifer, P. Rørth, E. Schejter, A. Schmidt, R. Vincentelli and the Bloomington stock centre. We thank the members of the Lecuit laboratory for fruitful discussions and for useful comments on the manuscript, especially S. Kerridge and J-M. Philippe. This work was supported by the CNRS, the Association pour la Recherche sur le Cancer (ARC) and the Fondation pour la Recherche Médicale (équipe labellisée). A.P. was supported by a fellowship from ARC.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conceived and planned by R.L., A.P. and T.L. A.P. made the initial observations that AP2 and Dyn were enriched at adherens junctions in early embryos, carried out the electron microscopy experiments (Fig. 1a–c) and showed that shi-ts is required for cell intercalation and GBE (Fig. 3a–g,g′). R. Levayer carried out all the other experiments. The data were analysed by R.L., A.P. and T.L. The manuscript was written by R.L. and T.L.

Corresponding author

Correspondence to Thomas Lecuit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2022 kb)

Supplementary Movie 1

Supplementary Information (MOV 2628 kb)

Supplementary Movie 2

Supplementary Information (MOV 2617 kb)

Supplementary Movie 3

Supplementary Information (MOV 1689 kb)

Supplementary Movie 4

Supplementary Information (MOV 2808 kb)

Supplementary Movie 5

Supplementary Information (MOV 2761 kb)

Supplementary Movie 6

Supplementary Information (MOV 3194 kb)

Supplementary Movie 7

Supplementary Information (MOV 1955 kb)

Supplementary Movie 8

Supplementary Information (MOV 3788 kb)

Supplementary Movie 9

Supplementary Information (MOV 5286 kb)

Supplementary Movie 10

Supplementary Information (MOV 3462 kb)

Supplementary Movie 11

Supplementary Information (MOV 1840 kb)

Supplementary Movie 12

Supplementary Information (MOV 3222 kb)

Supplementary Movie 13

Supplementary Information (MOV 1746 kb)

Supplementary Movie 14

Supplementary Information (MOV 4252 kb)

Supplementary Movie 15

Supplementary Information (MOV 2966 kb)

Supplementary Movie 16

Supplementary Information (MOV 2802 kb)

Supplementary Movie 17

Supplementary Information (MOV 2578 kb)

Supplementary Movie 18

Supplementary Information (MOV 2975 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levayer, R., Pelissier-Monier, A. & Lecuit, T. Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nat Cell Biol 13, 529–540 (2011). https://doi.org/10.1038/ncb2224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing