Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1

Abstract

Meiotic crossover formation between homologous chromosomes (homologues) entails DNA double-strand break (DSB) formation, homology search using DSB ends, and synaptonemal-complex formation coupled with DSB repair. Meiotic progression must be prevented until DSB repair and homologue alignment are completed, to avoid the formation of aneuploid gametes. Here we show that mouse HORMAD1 ensures that sufficient numbers of processed DSBs are available for successful homology search. HORMAD1 is needed for normal synaptonemal-complex formation and for the efficient recruitment of ATR checkpoint kinase activity to unsynapsed chromatin. The latter phenomenon was proposed to be important in meiotic prophase checkpoints in both sexes. Consistent with this hypothesis, HORMAD1 is essential for the elimination of synaptonemal-complex-defective oocytes. Synaptonemal-complex formation results in HORMAD1 depletion from chromosome axes. Thus, we propose that the synaptonemal complex and HORMAD1 are key components of a negative feedback loop that coordinates meiotic progression with homologue alignment: HORMAD1 promotes homologue alignment and synaptonemal-complex formation, and synaptonemal complexes downregulate HORMAD1 function, thereby permitting progression past meiotic prophase checkpoints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HORMAD1 promotes synaptonemal-complex formation independently of DSB-dependent processes.
Figure 2: Numbers of early-, intermediate- and late-recombination-protein foci are lower in the absence of HORMAD1 in prophase meiocytes.
Figure 3: Amounts of SPO11–oligonucleotide complexes in testes are lower in the absence of HORMAD1.
Figure 4: HORMAD1 is required for sex-body and pseudo-sex-body formation in the Spo11+/+ and Spo11−/− backgrounds, respectively.
Figure 5: HORMAD1 is required for efficient accumulation of ATR, TOPBP1 and BRCA1 on chromatin in the absence of programmed DSBs.
Figure 6: Lack of HORMAD1 allows survival of oocytes in the synaptonemal-complex-defective Spo11−/− mutant.
Figure 7: Lower numbers of chiasmata form in Hormad1−/− oocytes.
Figure 8: Model for meiotic progression: negative feedback loop of HORMAD1 and synaptonemal-complex coordinates homology search and meiotic progression.

Similar content being viewed by others

References

  1. Baudat, F. & de Massy, B. Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Res. 15, 565–577 (2007).

    Article  CAS  Google Scholar 

  2. Hunter, N. Meiotic Recombination in Molecular Genetics of Recombination (Springer, 2007).

    Google Scholar 

  3. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article  CAS  Google Scholar 

  4. Baudat, F., Manova, K., Yuen, J. P., Jasin, M. & Keeney, S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6, 989–998 (2000).

    Article  CAS  Google Scholar 

  5. Romanienko, P. J. & Camerini-Otero, R. D. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol. Cell 6, 975–987 (2000).

    Article  CAS  Google Scholar 

  6. Sun, H., Treco, D. & Szostak, J. W. Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64, 1155–1161 (1991).

    Article  CAS  Google Scholar 

  7. Hamer, G., Novak, I., Kouznetsova, A. & Höög, C. Disruption of pairing and synapsis of chromosomes causes stage-specific apoptosis of male meiotic cells. Theriogenology 69, 333–339 (2008).

    Article  CAS  Google Scholar 

  8. Hamer, G. et al. Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex. J. Cell Sci. 121, 2445–2451 (2008).

    Article  CAS  Google Scholar 

  9. Bolcun-Filas, E. et al. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J. Cell Biol. 176, 741–747 (2007).

    Article  CAS  Google Scholar 

  10. Bolcun-Filas, E. et al. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLoS Genet. 5, e1000393 (2009).

    Article  Google Scholar 

  11. de Vries, F. A. et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 19, 1376–1389 (2005).

    Article  CAS  Google Scholar 

  12. Barchi, M. et al. Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol. Cell Biol. 25, 7203–7215 (2005).

    Article  CAS  Google Scholar 

  13. Burgoyne, P. S., Mahadevaiah, S. K. & Turner, J. M. The consequences of asynapsis for mammalian meiosis. Nat. Rev. Genet. 10, 207–216 (2009).

    Article  CAS  Google Scholar 

  14. Burgoyne, P. S., Mahadevaiah, S. K. & Turner, J. M. The management of DNA double-strand breaks in mitotic G2, and in mammalian meiosis viewed from a mitotic G2 perspective. Bioessays 29, 974–986 (2007).

    Article  CAS  Google Scholar 

  15. Aravind, L. & Koonin, E. V. The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem. Sci. 23, 284–286 (1998).

    Article  CAS  Google Scholar 

  16. Martinez-Perez, E. & Villeneuve, A. M. HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis. Genes Dev. 19, 2727–2743 (2005).

    Article  CAS  Google Scholar 

  17. Nonomura, K., Nakano, M., Eiguchi, M., Suzuki, T. & Kurata, N. PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J. Cell Sci. 119, 217–225 (2006).

    Article  CAS  Google Scholar 

  18. Couteau, F. & Zetka, M. HTP-1 coordinates synaptonemal complex assembly with homolog alignment during meiosis in C. elegans. Genes Dev. 19, 2744–2756 (2005).

    Article  CAS  Google Scholar 

  19. Goodyer, W. et al. HTP-3 links DSB formation with homolog pairing and crossing over during C. elegans meiosis. Dev. Cell 14, 263–274 (2008).

    Article  CAS  Google Scholar 

  20. Martinez-Perez, E. et al. Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev. 22, 2886–2901 (2008).

    Article  CAS  Google Scholar 

  21. Severson, A. F., Ling, L., van Zuylen, V. & Meyer, B. J. The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation. Genes Dev. 23, 1763–1778 (2009).

    Article  CAS  Google Scholar 

  22. Zetka, M. C., Kawasaki, I., Strome, S. & Muller, F. Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. Genes Dev. 13, 2258–2270 (1999).

    Article  CAS  Google Scholar 

  23. Couteau, F., Nabeshima, K., Villeneuve, A. & Zetka, M. A component of C. elegans meiotic chromosome axes at the interface of homolog alignment, synapsis, nuclear reorganization, and recombination. Curr. Biol. 14, 585–592 (2004).

    Article  CAS  Google Scholar 

  24. MacQueen, A. J., Colaiacovo, M. P., McDonald, K. & Villeneuve, A. M. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 16, 2428–2442 (2002).

    Article  CAS  Google Scholar 

  25. Nabeshima, K., Villeneuve, A. M. & Hillers, K. J. Chromosome-wide regulation of meiotic crossover formation in Caenorhabditis elegans requires properly assembled chromosome axes. Genetics 168, 1275–1292 (2004).

    Article  CAS  Google Scholar 

  26. Sanchez-Moran, E., Santos, J. L., Jones, G. H. & Franklin, F. C. ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes Dev. 21, 2220–2233 (2007).

    Article  CAS  Google Scholar 

  27. Hollingsworth, N. M. & Byers, B. HOP1: a yeast meiotic pairing gene. Genetics 121, 445–462 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Loidl, J., Klein, F. & Scherthan, H. Homologous pairing is reduced but not abolished in asynaptic mutants of yeast. J. Cell Biol. 125, 1191–1200 (1994).

    Article  CAS  Google Scholar 

  29. Schwacha, A. & Kleckner, N. Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76, 51–63 (1994).

    Article  CAS  Google Scholar 

  30. Hollingsworth, N. M. & Ponte, L. Genetic interactions between HOP1, RED1 and MEK1 suggest that MEK1 regulates assembly of axial element components during meiosis in the yeast Saccharomyces cerevisiae. Genetics 147, 33–42 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bailis, J. M., Smith, A. V. & Roeder, G. S. Bypass of a meiotic checkpoint by overproduction of meiotic chromosomal proteins. Mol. Cell Biol. 20, 4838–4848 (2000).

    Article  CAS  Google Scholar 

  32. Woltering, D. et al. Meiotic segregation, synapsis, and recombination checkpoint functions require physical interaction between the chromosomal proteins Red1p and Hop1p. Mol. Cell Biol. 20, 6646–6658 (2000).

    Article  CAS  Google Scholar 

  33. Niu, H. et al. Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1. Mol. Biol. Cell 16, 5804–5818 (2005).

    Article  CAS  Google Scholar 

  34. Niu, H. et al. Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis. Mol. Cell Biol. 27, 5456–5467 (2007).

    Article  CAS  Google Scholar 

  35. Carballo, J. A., Johnson, A. L., Sedgwick, S. G. & Cha, R. S. Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132, 758–770 (2008).

    Article  CAS  Google Scholar 

  36. Joshi, N., Barot, A., Jamison, C. & Borner, G. V. Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis. PLoS Genet. 5, e1000557 (2009).

    Article  Google Scholar 

  37. Zetka, M. Homologue pairing, recombination and segregation in Caenorhabditis elegans. Genome Dyn. 5, 43–55 (2009).

    Article  CAS  Google Scholar 

  38. Hayashi, M., Chin, G. M. & Villeneuve, A. M. C. elegans germ cells switch between distinct modes of double-strand break repair during meiotic prophase progression. PLoS Genet. 3, e191 (2007).

    Article  Google Scholar 

  39. Fukuda, T., Daniel, K., Wojtasz, L., Toth, A. & Höög, C. A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes. Exp. Cell Res. 316, 158–171 (2010).

    Article  CAS  Google Scholar 

  40. Wojtasz, L. et al. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet. 5, e1000702 (2009).

    Article  Google Scholar 

  41. Shin, Y. H. et al. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis. PLoS Genet. 6, e1001190 (2010).

    Article  Google Scholar 

  42. Ahmed, E. A. & de Rooij, D. G. Staging of mouse seminiferous tubule cross-sections. Methods Mol. Biol. 558, 263–277 (2009).

    Article  Google Scholar 

  43. Pittman, D. L. et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol. Cell 1, 697–705 (1998).

    Article  CAS  Google Scholar 

  44. Yoshida, K. et al. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol. Cell 1, 707–718 (1998).

    Article  CAS  Google Scholar 

  45. Neale, M. J., Pan, J. & Keeney, S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057 (2005).

    Article  CAS  Google Scholar 

  46. Moens, P. B., Marcon, E., Shore, J. S., Kochakpour, N. & Spyropoulos, B. Initiation and resolution of interhomolog connections: crossover and non-crossover sites along mouse synaptonemal complexes. J. Cell Sci. 120, 1017–1027 (2007).

    Article  CAS  Google Scholar 

  47. Baker, S. M. et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat. Genet. 13, 336–342 (1996).

    Article  CAS  Google Scholar 

  48. Marcon, E. & Moens, P. MLH1p and MLH3p localize to precociously induced chiasmata of okadaic-acid-treated mouse spermatocytes. Genetics 165, 2283–2287 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fernandez-Capetillo, O., Liebe, B., Scherthan, H. & Nussenzweig, A. H2AX regulates meiotic telomere clustering. J. Cell Biol. 163, 15–20 (2003).

    Article  CAS  Google Scholar 

  50. Bellani, M. A., Romanienko, P. J., Cairatti, D. A. & Camerini-Otero, R. D. SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm−/− spermatocytes. J. Cell Sci. 118, 3233–3245 (2005).

    Article  CAS  Google Scholar 

  51. Moens, P. B. et al. The association of ATR protein with mouse meiotic chromosome cores. Chromosoma 108, 95–102 (1999).

    Article  CAS  Google Scholar 

  52. Plug, A.W. et al. Changes in protein composition of meiotic nodules during mammalian meiosis. J. Cell Sci. 111 (Pt 4), 413–423 (1998).

    Google Scholar 

  53. Plug, A. W. et al. ATM and RPA in meiotic chromosome synapsis and recombination. Nat. Genet. 17, 457–461 (1997).

    Article  CAS  Google Scholar 

  54. Keegan, K. S. et al. The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev. 10, 2423–2437 (1996).

    Article  CAS  Google Scholar 

  55. Perera, D. et al. TopBP1 and ATR colocalization at meiotic chromosomes: role of TopBP1/Cut5 in the meiotic recombination checkpoint. Mol. Biol. Cell 15, 1568–1579 (2004).

    Article  CAS  Google Scholar 

  56. Turner, J. M. et al. BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr. Biol. 14, 2135–2142 (2004).

    Article  CAS  Google Scholar 

  57. Turner, J. M. et al. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat. Genet. 37, 41–47 (2005).

    Article  CAS  Google Scholar 

  58. Baarends, W. M. et al. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol. Cell Biol. 25, 1041–1053 (2005).

    Article  CAS  Google Scholar 

  59. Turner, J. M., Mahadevaiah, S. K., Ellis, P. J., Mitchell, M. J. & Burgoyne, P. S. Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev. Cell 10, 521–529 (2006).

    Article  CAS  Google Scholar 

  60. Mahadevaiah, S. K. et al. Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. J. Cell Biol. 182, 263–276 (2008).

    Article  CAS  Google Scholar 

  61. Royo, H. et al. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr. Biol. 20, 2117–2123 (2010).

    Article  CAS  Google Scholar 

  62. Martini, E., Diaz, R. L., Hunter, N. & Keeney, S. Crossover homeostasis in yeast meiosis. Cell 126, 285–295 (2006).

    Article  CAS  Google Scholar 

  63. Testa, G. et al. A reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles. Genesis 38, 151–158 (2004).

    Article  CAS  Google Scholar 

  64. Zhang, Y., Buchholz, F., Muyrers, J. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    Article  CAS  Google Scholar 

  65. Rodriguez, C. I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).

    Article  CAS  Google Scholar 

  66. Lallemand, Y., Luria, V., Haffner-Krausz, R. & Lonai, P. Maternally expressed PGK–Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase. Transgenic Res. 7, 105–112 (1998).

    Article  CAS  Google Scholar 

  67. Hodges, C. A. & Hunt, P. A. Simultaneous analysis of chromosomes and chromosome-associated proteins in mammalian oocytes and embryos. Chromosoma 111, 165–169 (2002).

    Article  CAS  Google Scholar 

  68. Enders, G. C. May J. J. 2nd developmentally regulated expression of a mouse germ cell nuclear antigen examined from embryonic day 11 to adult in male and female mice. Dev. Biol. 163, 331–340 (1994).

    Article  CAS  Google Scholar 

  69. Suzumori, N., Yan, C., Matzuk, M. M. & Rajkovic, A. Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mech. Dev. 111, 137–141 (2002).

    Article  CAS  Google Scholar 

  70. Niault, T. et al. Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I. PLoS One 2, e1165 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Hientzsch and K. Duerschke for general laboratory support and technical assistance; R. Jessberger for sharing ideas, antibodies (anti-SYCP3, anti-STAG3 and anti-SMC3) and support; F. Baudat and B. De Massy for providing us with Spo11+/− mice; J. Chen for the anti-TOPBP1 antibody; E. Marcon for the anti-RPA antibody; C. Höög for anti-SYCE1 and anti-SYCE2 antibodies; G.C. Enders for the anti-GCNA antibody; and M.P. Thelen for the anti-SPO11 antibody. We are grateful to M. Siomos and D. Knapp for discussion, revising and proofreading the manuscript. The Deutsche Forschungsgemeinschaft (DFG; grants: TO421/4-1 SPP1384 and TO421/3-1) and the Sächsisches Staatsministerium für Wissenschaft und Kunst supported K.D. and A.T.; Grants HD53855 and HD40916 from the US National Institutes of Health supported J.L., I.R., M.J. and S.K.; ARC (Subvention fixe 1143) and La Ligue Regionale (RS09/75-39) supported K.H. and K.W.; the Medical Research Council UK supported H.J.C.; the DFG research centre and cluster of excellence to the Center for Regenerative Therapies Dresden (CRTD) supported the work of K.A.; a CRTD seed grant supported K.A. and A.T.; and an EFRE grant (Europäischer Fonds für Regionale Entwicklung) supported K.A., J.F. and A.F.S.

Author information

Authors and Affiliations

Authors

Contributions

K.D. designed, carried out and analysed most of the experiments; J.L., I.R., M.J. and S.K. contributed with SPO11–oligonucleotide measurements; J.F., K.A. and A.F.S. designed and generated the targeting construct and targeted embryonic stem cells; K.H. and K.W. carried out oocyte-maturation experiments and oocyte video microscopy; H.J.C. provided the

Syce2+/− mouse, A.T. was involved in oocyte-maturation experiments and oocyte counts, helped K.D. in experimental design and wrote the paper together with K.D. All authors were involved in discussions and commented on the manuscript.

Corresponding authors

Correspondence to Ignasi Roig or Attila Tóth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2325 kb)

Supplementary Movie 1

Supplementary Information (MOV 1438 kb)

Supplementary Movie 2

Supplementary Information (MOV 1806 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel, K., Lange, J., Hached, K. et al. Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nat Cell Biol 13, 599–610 (2011). https://doi.org/10.1038/ncb2213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing