Dynamics of ESCRT protein recruitment during retroviral assembly


The ESCRT (endosomal sorting complex required for transport) complexes and associated proteins mediate membrane scission reactions, such as multivesicular body formation, the terminal stages of cytokinesis and retroviral particle release. These proteins are believed to be sequentially recruited to the site of membrane scission, and then complexes are disassembled by the ATPase Vps4A. However, these events have never been observed in living cells, and their dynamics are unknown. By quantifying the recruitment of several ESCRT and associated proteins during the assembly of two retroviruses, we show that Alix progressively accumulated at viral assembly sites, coincident with the accumulation of the main viral structural protein, Gag, and was not recycled after assembly. In contrast, ESCRT-III and Vps4A were transiently recruited only when the accumulation of Gag was complete. These data indicate that the rapid and transient recruitment of proteins that act late in the ESCRT pathway and carry out membrane fission is triggered by prior and progressive accumulation of proteins that bridge viral proteins and the late-acting ESCRT proteins.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of the GFP–Chmp4b-expressing cell clone.
Figure 2: Effect of stably expressed GFP-fused ESCRT proteins on cell proliferation, cytokinesis and virion assembly and release.
Figure 3: Catalytically inactive Vps4A increases localization of stably expressed GFP-tagged ESCRT-III proteins at sites of HIV-1 assembly.
Figure 4: Imaging Chmp1b, Chmp4b, Chmp4c and Vps4A recruitment during HIV-1 Gag assembly.
Figure 5: Imaging Chmp1b, Chmp4b, Chmp4c and Vps4A recruitment during EIAV Gag assembly.
Figure 6: Imaging Alix recruitment during EIAV Gag assembly.
Figure 7: Dynamics and pattern of ESCRT protein recruitment during retroviral assembly.


  1. 1

    McDonald, B. & Martin-Serrano, J. No strings attached: the ESCRT machinery in viral budding and cytokinesis. J. Cell Sci. 122, 2167–2177 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Wollert, T. et al. The ESCRT machinery at a glance. J. Cell Sci. 122, 2163–2166 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Bieniasz, P. D. Late budding domains and host proteins in enveloped virus release. Virology 344, 55–63 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Williams, R. L. & Urbe, S. The emerging shape of the ESCRT machinery. Nat. Rev. Mol. Cell Biol. 8, 355–368 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283–289 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev. Cell 3, 271–282 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Saksena, S., Wahlman, J., Teis, D., Johnson, A. E. & Emr, S. D. Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136, 97–109 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. Membrane scission by the ESCRT-III complex. Nature 458, 172–177 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Wollert, T. & Hurley, J. H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864–869 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7, 1313–1319 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Fisher, R. D. et al. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128, 841–852 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Martin-Serrano, J., Eastman, S. W., Chung, W. & Bieniasz, P. D. HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J. Cell Biol. 168, 89–101 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Martin-Serrano, J., Yarovoy, A., Perez-Caballero, D. & Bieniasz, P. D. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc. Natl Acad. Sci. USA 100, 12414–12419 (2003).

    CAS  Article  Google Scholar 

  18. 18

    von Schwedler, U. K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Jouvenet, N. et al. Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol. 4, e435 (2006).

    Article  Google Scholar 

  20. 20

    Finzi, A., Orthwein, A., Mercier, J. & Cohen, E. A. Productive human immunodeficiency virus type 1 assembly takes place at the plasma membrane. J. Virol. 81, 7476–7490 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Welsch, S. et al. HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog. 3, e36 (2007).

    Article  Google Scholar 

  22. 22

    Simon, S. M. Partial internal reflections on total internal reflection fluorescent microscopy. Trends Cell Biol. 19, 661–668 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Jouvenet, N., Bieniasz, P. D. & Simon, S. M. Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 454, 236–240 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Jouvenet, N., Simon, S. M. & Bieniasz, P. D. Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. Proc. Natl Acad. Sci. USA 106, 19114–19119 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Ivanchenko, S. et al. Dynamics of HIV-1 assembly and release. PLoS Pathog. 5, e1000652 (2009).

    Article  Google Scholar 

  26. 26

    Lin, Y., Kimpler, L. A., Naismith, T. V., Lauer, J. M. & Hanson, P. I. Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7-1 with itself, membranes, and the AAA+ ATPase SKD1. J. Biol. Chem. 280, 12799–12809 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Howard, T. L., Stauffer, D. R., Degnin, C. R. & Hollenberg, S. M. CHMP1 functions as a member of a newly defined family of vesicle trafficking proteins. J. Cell Sci. 114, 2395–2404 (2001).

    CAS  PubMed  Google Scholar 

  28. 28

    Stuchell, M. D. et al. The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J. Biol. Chem. 279, 36059–36071 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Zamborlini, A. et al. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc. Natl Acad. Sci. USA 103, 19140–19145 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Goila-Gaur, R., Demirov, D. G., Orenstein, J. M., Ono, A. & Freed, E. O. Defects in human immunodeficiency virus budding and endosomal sorting induced by TSG101 overexpression. J. Virol. 77, 6507–6519 (2003).

    CAS  Article  Google Scholar 

  31. 31

    Morita, E. et al. Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proc. Natl Acad. Sci. USA 107, 12889–12894 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. Embo J. 26, 4215–4227 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    CAS  Article  Google Scholar 

  34. 34

    VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl Acad. Sci. USA 98, 7724–7729 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Usami, Y., Popov, S. & Gottlinger, H. G. Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J. Virol. 81, 6614–6622 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Carlton, J. G., Agromayor, M. & Martin-Serrano, J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl Acad. Sci. USA 105, 10541–10546 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Zhai, Q. et al. Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV. Nat. Struct. Mol. Biol. 15, 43–49 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Briggs, J. A. et al. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol. 11, 672–675 (2004).

    CAS  Article  Google Scholar 

  39. 39

    Popov, S., Popova, E., Inoue, M. & Gottlinger, H. G. Divergent Bro1 domains share the capacity to bind human immunodeficiency virus type 1 nucleocapsid and to enhance virus-like particle production. J. Virol. 83, 7185–7193 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Dussupt, V. et al. The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLoS Pathog. 5, e1000339 (2009).

    Article  Google Scholar 

  41. 41

    Neil, S. J., Eastman, S. W., Jouvenet, N. & Bieniasz, P. D. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog. 2, e39 (2006).

    Article  Google Scholar 

  42. 42

    Martin-Serrano, J., Zang, T. & Bieniasz, P. D. Role of ESCRT-I in retroviral budding. J. Virol. 77, 4794–4804 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Jouvenet, N. et al. Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin. J. Virol. 83, 1837–1844 (2009).

    CAS  Article  Google Scholar 

Download references


We thank W. Sundquist for reagents, J. Martin-Serrano for discussions, V. Sahi for fluorescence-activated cell sorting analysis and A. Mattheyses for TIR-FM settings. This work was supported by NIH grant K99AI87368 (to N.J.), NIH grant R01AI50111 and R01AI52774 (to P.D.B.) and NSF grant BES-0620813 and NIH GM87977 and R01 AI089844 (to S.M.S.). P.D.B. is a Howard Hughes Medical Institute investigator.

Author information




N.J., S.M.S. and P.D.B. conceived and designed the experiments. N.J. carried out the experiments with help from M.Z. (Figs 2d and 5). N.J., S.M.S. and P.D.B. analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Paul D. Bieniasz or Sanford M. Simon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1790 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jouvenet, N., Zhadina, M., Bieniasz, P. et al. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat Cell Biol 13, 394–401 (2011). https://doi.org/10.1038/ncb2207

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing