Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation

Abstract

The ERK (extracellular signal-regulated kinase) MAPK (mitogen-activated protein kinase) cascade (Raf–MEK–ERK) mediates mitogenic signalling, and is frequently hyperactivated by Ras oncogenes in human cancer. The entire range of activities of multifunctional Ras in carcinogenesis remains elusive. Here we report that the ERK pathway is downregulated by MEK (MAPK–ERK kinase) SUMOylation, which is inhibited by oncogenic Ras. MEK SUMOylation blocked ERK activation by disrupting the specific docking interaction between MEK and ERK. Expression of un-SUMOylatable MEK enhanced ERK activation, cell differentiation, proliferation and malignant transformation by oncogenic ErbB2 or Raf, but not by active Ras. Interestingly, MEK SUMOylation was abrogated in cancer cells harbouring Ras mutations. Oncogenic Ras inhibits MEK SUMOylation by impairing the function of the MEKK1 MAPKKK as a SUMO-E3 ligase specific for MEK. Furthermore, forced enhancement of MEK SUMOylation suppressed Ras-induced cell transformation. Thus, oncogenic Ras efficiently activates the ERK pathway both by activating Raf and by inhibiting MEK SUMOylation, thereby inducing carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SUMOylation of MEK.
Figure 2: SUMOylation of MEK1 inhibits MEK1 kinase activity.
Figure 3: Functional analysis of the SUMOylation-defective MEK1 mutant.
Figure 4: Oncogenic Ras inhibits MEK1 SUMOylation in vivo.
Figure 5: MEK1 SUMOylation inhibits Ras-dependent transformation.
Figure 6: MEKK1 is a SUMO-E3 for MEK.
Figure 7: Oncogenic Ras inhibits MEK SUMOylation and thereby sensitizes the ERK pathway.

Similar content being viewed by others

References

  1. Calvo, F., Agudo-Ibanez, L. & Crespo, P. The Ras-ERK pathway: understanding site-specific signaling provides hope of new anti-tumor therapies. Bioessays 32, 412–421 (2010).

    Article  CAS  Google Scholar 

  2. Yao, Z. & Seger, R. The ERK signaling cascade—views from different subcellular compartments. Biofactors 35, 407–416 (2009).

    Article  CAS  Google Scholar 

  3. Avruch, J. MAP kinase pathways: the first twenty years. Biochim. Biophys. Acta 1773, 1150–1160 (2007).

    Article  CAS  Google Scholar 

  4. Raman, M., Chen, W. & Cobb, M. H. Differential regulation and properties of MAPKs. Oncogene 26, 3100–3112 (2007).

    Article  CAS  Google Scholar 

  5. Dhanasekaran, D. N. & Johnson, G. L. MAPKs: function, regulation, role in cancer and therapeutic targeting. Oncogene 26, 3097–3099 (2007).

    Article  CAS  Google Scholar 

  6. Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009).

    Article  CAS  Google Scholar 

  7. Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    Article  CAS  Google Scholar 

  8. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  Google Scholar 

  9. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  Google Scholar 

  10. Meloche, S. & Pouyssegur, J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26, 3227–3239 (2007).

    Article  CAS  Google Scholar 

  11. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer 3, 459–465 (2003).

    Article  CAS  Google Scholar 

  12. Schubbert, S., Shannon, K. & Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 7, 295–308 (2007).

    Article  CAS  Google Scholar 

  13. Young, A. et al. Ras signaling and therapies. Adv. Cancer Res. 102, 1–17 (2009).

    Article  CAS  Google Scholar 

  14. Mody, A., Weiner, J. & Ramanathan, S. Modularity of MAP kinases allows deformation of their signalling pathways. Nat. Cell Biol. 11, 484–491 (2009).

    Article  CAS  Google Scholar 

  15. Johnson, G. L. & Gomez, S. M. Sequence patches on MAPK surfaces define protein–protein interactions. Genome Biol. 10, 222 (2009).

    Article  Google Scholar 

  16. Tanoue, T., Adachi, M., Moriguchi, T. & Nishida, E. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell Biol. 2, 110–116 (2000).

    Article  CAS  Google Scholar 

  17. Enslen, H. & Davis, R. J. Regulation of MAP kinases by docking domains. Biol. Cell 93, 5–14 (2001).

    Article  CAS  Google Scholar 

  18. Bardwell, A. J., Frankson, E. & Bardwell, L. Selectivity of docking sites in MAPK kinases. J. Biol. Chem. 284, 13165–13173 (2009).

    Article  CAS  Google Scholar 

  19. Takekawa, M., Tatebayashi, K. & Saito, H. Conserved docking site is essential for activation of mammalian MAP kinase kinases by specific MAP kinase kinase kinases. Mol. Cell 18, 295–306 (2005).

    Article  CAS  Google Scholar 

  20. Geiss-Friedlander, R. & Melchior, F. Concepts in SUMOylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947–956 (2007).

    Article  CAS  Google Scholar 

  21. Melchior, F., Schergaut, M. & Pichler, A. SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612–618 (2003).

    Article  CAS  Google Scholar 

  22. Johnson, E. S. Protein modification by SUMO. Annu Rev. Biochem. 73, 355–382 (2004).

    Article  CAS  Google Scholar 

  23. Seeler, J. S. & Dejean, A. Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4, 690–699 (2003).

    Article  CAS  Google Scholar 

  24. Hay, R. T. SUMO-specific proteases: a twist in the tail. Trends Cell Biol. 17, 370–376 (2007).

    Article  CAS  Google Scholar 

  25. Muller, S., Hoege, C., Pyrowolakis, G. & Jentsch, S. SUMO, ubiquitin’s mysterious cousin. Nat. Rev. Mol. Cell Biol. 2, 202–210 (2001).

    Article  CAS  Google Scholar 

  26. Kim, J. H. et al. Roles of SUMOylation of a reptin chromatin-remodelling complex in cancer metastasis. Nat. Cell Biol. 8, 631–639 (2006).

    Article  CAS  Google Scholar 

  27. Steffan, J. S. et al. SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304, 100–104 (2004).

    Article  CAS  Google Scholar 

  28. Cheng, J., Kang, X., Zhang, S. & Yeh, E. T. SUMO-specific protease 1 is essential for stabilization of HIF1α during hypoxia. Cell 131, 584–595 (2007).

    Article  CAS  Google Scholar 

  29. Kamitani, T., Nguyen, H. P. & Yeh, E. T. Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. J. Biol. Chem. 272, 14001–14004 (1997).

    Article  CAS  Google Scholar 

  30. Uchimura, Y., Nakamura, M., Sugasawa, K., Nakao, M. & Saitoh, H. Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli. Anal Biochem. 331, 204–206 (2004).

    CAS  PubMed  Google Scholar 

  31. Ohren, J. F. et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat. Struct. Mol. Biol. 11, 1192–1197 (2004).

    Article  CAS  Google Scholar 

  32. Kranenburg, O., Verlaan, I. & Moolenaar, W. H. Dynamin is required for the activation of mitogen-activated protein (MAP) kinase by MAP kinase kinase. J. Biol. Chem. 274, 35301–35304 (1999).

    Article  CAS  Google Scholar 

  33. Ory, S., Zhou, M., Conrads, T. P., Veenstra, T. D. & Morrison, D. K. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr. Biol. 13, 1356–1364 (2003).

    Article  CAS  Google Scholar 

  34. Terai, K. & Matsuda, M. Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep. 6, 251–255 (2005).

    Article  CAS  Google Scholar 

  35. Xu, J. et al. Insulin enhances growth hormone induction of the MEK/ERK signaling pathway. J. Biol. Chem. 281, 982–992 (2006).

    Article  CAS  Google Scholar 

  36. Galperin, E. & Sorkin, A. Endosomal targeting of MEK2 requires RAF, MEK kinase activity and clathrin-dependent endocytosis. Traffic 9, 1776–1790 (2008).

    Article  CAS  Google Scholar 

  37. Liu, Y., Fisher, D. A. & Storm, D. R. Intracellular sorting of neuromodulin (GAP-43) mutants modified in the membrane targeting domain. J. Neurosci. 14, 5807–5817 (1994).

    Article  CAS  Google Scholar 

  38. Liang, X., Lu, Y., Neubert, T. A. & Resh, M. D. Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species. J. Biol. Chem. 277, 33032–33040 (2002).

    Article  CAS  Google Scholar 

  39. Jakobs, A. et al. Ubc9 fusion-directed SUMOylation (UFDS): a method to analyse function of protein SUMOylation. Nat. Methods 4, 245–250 (2007).

    Article  CAS  Google Scholar 

  40. Bardwell, A. J., Flatauer, L. J., Matsukuma, K., Thorner, J. & Bardwell, L. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J. Biol. Chem. 276, 10374–10386 (2001).

    Article  CAS  Google Scholar 

  41. Xu, B., Stippec, S., Robinson, F. L. & Cobb, M. H. Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking. J. Biol. Chem. 276, 26509–26515 (2001).

    Article  CAS  Google Scholar 

  42. Chiu, V. K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nat. Cell Biol. 4, 343–350 (2002).

    CAS  PubMed  Google Scholar 

  43. Lerner, E. C. et al. Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15, 1283–1288 (1997).

    Article  CAS  Google Scholar 

  44. Karandikar, M., Xu, S. & Cobb, M. H. MEKK1 binds raf-1 and the ERK2 cascade components. J. Biol. Chem. 275, 40120–40127 (2000).

    Article  CAS  Google Scholar 

  45. Saltzman, A. et al. hUBC9 associates with MEKK1 and type I TNF-α receptor and stimulates NFκB activity. FEBS Lett. 425, 431–435 (1998).

    Article  CAS  Google Scholar 

  46. Li, T. et al. SUMOylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc. Natl Acad. Sci. USA 101, 8551–8556 (2004).

    Article  CAS  Google Scholar 

  47. Russell, M., Lange-Carter, C. A. & Johnson, G. L. Direct interaction between Ras and the kinase domain of mitogen-activated protein kinase kinase kinase (MEKK1). J. Biol. Chem. 270, 11757–11760 (1995).

    Article  CAS  Google Scholar 

  48. Eletr, Z. M., Huang, D. T., Duda, D. M., Schulman, B. A. & Kuhlman, B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat. Struct. Mol. Biol. 12, 933–934 (2005).

    Article  CAS  Google Scholar 

  49. Dadke, S. et al. Regulation of protein tyrosine phosphatase 1B by SUMOylation. Nat. Cell Biol. 9, 80–85 (2007).

    Article  CAS  Google Scholar 

  50. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  51. Murphy, L. O. & Blenis, J. MAPK signal specificity: the right place at the right time. Trends Biochem. Sci. 31, 268–275 (2006).

    Article  CAS  Google Scholar 

  52. Yamamoto, T. et al. Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr. Biol. 16, 1171–1182 (2006).

    Article  CAS  Google Scholar 

  53. Lu, Z., Xu, S., Joazeiro, C., Cobb, M. H. & Hunter, T. The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol. Cell 9, 945–956 (2002).

    Article  CAS  Google Scholar 

  54. Witowsky, J. A. & Johnson, G. L. Ubiquitylation of MEKK1 inhibits its phosphorylation of MKK1 and MKK4 and activation of the ERK1/2 and JNK pathways. J. Biol. Chem. 278, 1403–1406 (2003).

    Article  CAS  Google Scholar 

  55. Sobko, A., Ma, H. & Firtel, R. A. Regulated SUMOylation and ubiquitination of DdMEK1 is required for proper chemotaxis. Dev. Cell 2, 745–756 (2002).

    Article  CAS  Google Scholar 

  56. Kang, J. S., Saunier, E. F., Akhurst, R. J. & Derynck, R. The type I TGF-β receptor is covalently modified and regulated by SUMOylation. Nat. Cell Biol. 10, 654–664 (2008).

    Article  CAS  Google Scholar 

  57. Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2, 233–239 (1998).

    Article  CAS  Google Scholar 

  58. Sebolt-Leopold, J. S. & Herrera, R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer 4, 937–947 (2004).

    Article  CAS  Google Scholar 

  59. Arimoto, K., Fukuda, H., Imajoh-Ohmi, S., Saito, H. & Takekawa, M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat. Cell Biol. 10, 1324–1332 (2008).

    Article  CAS  Google Scholar 

  60. Akiyama, T. et al. The transforming potential of the c-erbB-2 protein is regulated by its autophosphorylation at the carboxyl-terminal domain. Mol. Cell Biol. 11, 833–842 (1991).

    Article  CAS  Google Scholar 

  61. Giroux, S. et al. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol. 9, 369–372 (1999).

    Article  CAS  Google Scholar 

  62. Wohlschlegel, J. A., Johnson, E. S., Reed, S. I. & Yates, J. R. 3rd Improved identification of SUMO attachment sites using C-terminal SUMOmutants and tailored protease digestion strategies. J. Proteome Res. 5, 761–770 (2006).

    Article  CAS  Google Scholar 

  63. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  Google Scholar 

  64. Cowley, S., Paterson, H., Kemp, P. & Marshall, C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841–852 (1994).

    Article  CAS  Google Scholar 

  65. Cuevas, B. D., Winter-Vann, A. M., Johnson, N. L. & Johnson, G. L. MEKK1 controls matrix degradation and tumor cell dissemination during metastasis of polyoma middle-T driven mammary cancer. Oncogene 25, 4998–5010 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas and other grants from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (M.T. and H.S.), by the Takeda Science Foundation, the Naito foundation and the DAIKO foundation (M.T.) and by the Global COE Program from MEXT, Japan. We thank J. Charron (Université Laval, Québec) for the M E K1−/− MEFs, T. Kitamura (University of Tokyo) for Plat-E cells and H. Saitoh (Kumamoto University), T. Yamamoto (University of Tokyo), T. Kataoka (Kobe University) and S. Iwata (University of Tokyo) for plasmids.

Author information

Authors and Affiliations

Authors

Contributions

Y.K., P.O’G. and M.T. designed and carried out the experiments; Y.K., P.O’G., H.S. and M.T. analysed the data and wrote the paper.

Corresponding authors

Correspondence to Haruo Saito or Mutsuhiro Takekawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1295 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, Y., O’Grady, P., Saito, H. et al. Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation. Nat Cell Biol 13, 282–291 (2011). https://doi.org/10.1038/ncb2169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing