Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis

Abstract

Besides its role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) initiates a cell death cascade1,2,3,4,5,6,7,8,9. Diverse apoptotic stimuli activate inducible nitric oxide synthase (iNOS) or neuronal NOS (nNOS), with the generated nitric oxide (NO) S-nitrosylating GAPDH, abolishing its catalytic activity and conferring on it the ability to bind to Siah1, an E3-ubiquitin-ligase with a nuclear localization signal (NLS). The GAPDH–Siah1 protein complex, in turn, translocates to the nucleus and mediates cell death; these processes are blocked by procedures that interfere with GAPDH–Siah1 binding. Nuclear events induced by GAPDH to kill cells have been obscure. Here we show that nuclear GAPDH is acetylated at Lys 160 by the acetyltransferase p300/CREB binding protein (CBP) through direct protein interaction, which in turn stimulates the acetylation and catalytic activity of p300/CBP. Consequently, downstream targets of p300/CBP, such as p53 (Refs 10,11,12,13,14,15), are activated and cause cell death. A dominant-negative mutant GAPDH with the substitution of Lys 160 to Arg (GAPDH-K160R) prevents activation of p300/CBP, blocks induction of apoptotic genes and decreases cell death. Our findings reveal a pathway in which NO-induced nuclear GAPDH mediates cell death through p300/CBP.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: GAPDH is acetylated in the nucleus at Lys 160 following NO stimulation.
Figure 2: GAPDH interacts with p300/CBP and GAPDH-K160R acts as a dominant-negative mutant.
Figure 3: GAPDH increases the catalytic activity of p300.
Figure 4: GAPDH–p300 activates downstream targets, such as p53 and PUMA.
Figure 5: Influence of GAPDH and GAPDH-K160R on cell death.

References

  1. 1

    Hara, M. R. et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nature Cell Biol. 7, 665–674 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Chuang, D. M., Hough, C. & Senatorov, V. V. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 45, 269–290 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Hara, M. R., Cascio, M. B. & Sawa, A. GAPDH as a sensor of NO stress. Biochim. Biophys. Acta 1762, 502–509 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Sirover, M. A. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta 1432, 159–184 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Ishitani, R. et al. Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J. Neurochem. 66, 928–935 (1996).

    CAS  Article  Google Scholar 

  6. 6

    Sawa, A., Khan, A. A., Hester, L. D. & Snyder, S. H. Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc. Natl Acad. Sci. USA 94, 11669–11674 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Carlile, G. W. et al. Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol. Pharmacol. 57, 2–12 (2000).

    CAS  PubMed  Google Scholar 

  8. 8

    Chen, R. W. et al. Involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and p53 in neuronal apoptosis: evidence that GAPDH is upregulated by p53. J. Neurosci. 19, 9654–9662 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Waldmeier, P. C., Boulton, A. A., Cools, A. R., Kato, A. C. & Tatton, W. G. Neurorescuing effects of the GAPDH ligand CGP 3466B. J. Neural. Transm. Suppl. 60, 197–214 (2000).

    Google Scholar 

  10. 10

    Lill, N. L., Grossman, S. R., Ginsberg, D., DeCaprio, J. & Livingston, D. M. Binding and modulation of p53 by p300/CBP coactivators. Nature 387, 823–827 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Avantaggiati, M. L. et al. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89, 1175–1184 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Chipuk, J. E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D. D. & Green, D. R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309, 1732–1735 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302, 1036–1038 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Chan, H. M. & La Thangue, N. B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 2363–2373 (2001).

    CAS  PubMed  Google Scholar 

  18. 18

    Hara, M. R. et al. Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc. Natl Acad. Sci. USA 103, 3887–3889 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Chen, L. F. & Greene, W. C. Regulation of distinct biological activities of the NF-κB transcription factor complex by acetylation. J. Mol. Med. 81, 549–557 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Thompson, P. R. et al. Regulation of the p300 HAT domain via a novel activation loop. Nature Struct. Mol. Biol. 11, 308–315 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Messmer, U. K., Ankarcrona, M., Nicotera, P. & Brune, B. p53 expression in nitric oxide-induced apoptosis. FEBS Lett. 355, 23–26 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Messmer, U. K. & Brune, B. Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem. J. 319 (Pt 1), 299–305 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Yin, Y. et al. Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Nature 391, 707–710 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Nowak, D. E., Tian, B. & Brasier, A. R. Two-step cross-linking method for identification of NF-κB gene network by chromatin immunoprecipitation. Biotechniques 39, 715–725 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E. & Stamler, J. S. Protein S-nitrosylation: purview and parameters. Nature Rev. Mol. Cell Biol. 6, 150–166 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Li, C. Q. et al. Apoptotic signaling pathways induced by nitric oxide in human lymphoblastoid cells expressing wild-type or mutant p53. Cancer Res. 64, 3022–3029 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Colell, A. et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129, 983–997 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Giordano, A. & Avantaggiati, M. L. p300 and CBP: partners for life and death. J. Cell Physiol. 181, 218–230 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Yao, T. P. et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Kawasaki, H. et al. Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature 393, 284–289 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Kung, A. L. et al. Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev. 14, 272–277 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Oike, Y. et al. Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum. Mol. Genet. 8, 387–396 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Giles, R. H., Peters, D. J. & Breuning, M. H. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 14, 178–183 (1998).

    CAS  Article  Google Scholar 

  34. 34

    Steffan, J. S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Turnell, A. S. et al. The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature 438, 690–695 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Dhakshinamoorthy, S. et al. Protein/DNA arrays identify nitric oxide-regulated cis-element and trans-factor activities some of which govern neuroblastoma cell viability. Nucleic Acids Res. 35, 5439–5451 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Koutsodontis, G., Vasilaki, E., Chou, W. C., Papakosta, P. & Kardassis, D. Physical and functional interactions between members of the tumour suppressor p53 and the Sp families of transcription factors: importance for the regulation of genes involved in cell-cycle arrest and apoptosis. Biochem. J. 389, 443–455 (2005).

    CAS  Article  Google Scholar 

  38. 38

    Frade, J. M., Rodriguez-Tebar, A. & Barde, Y. A. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383, 166–168 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by USPHS grants MH-069853 (A.S.); DA-00266, Research Scientist Award DA-00074 (S.H.S); NS-48206, NS-38377, DA-00226 (T.M.D, V.L.D) and grants from Stanley, NARSAD and S-R foundations (A.S.). We thank Yukiko L. Lema for preparing the figures and organizing the manuscript. We appreciate technical assistance provided by A. Kamiya.

Author information

Affiliations

Authors

Contributions

Ni.S. and M.R.H. were primarily responsible for experimental design and work, data analysis and preparation of figures, and helped to write the manuscript; M.K., M.C., B.-I.B., Ne.S. and B.T. contributed to data acquisition and analysis; T.D. and V.D. helped with the data analysis, provided technical assistance and material support; S.H.S and A.S. supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Solomon H. Snyder or Akira Sawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 993 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sen, N., Hara, M., Kornberg, M. et al. Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10, 866–873 (2008). https://doi.org/10.1038/ncb1747

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing