Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

EB1 regulates microtubule dynamics and tubulin sheet closure in vitro

Abstract

End binding 1 (EB1) is a plus-end-tracking protein (+TIP) that localizes to microtubule plus ends where it modulates their dynamics and interactions with intracellular organelles1,2. Although the regulating activity of EB1 on microtubule dynamics has been studied in cells3,4,5,6 and purified systems7,8,9,10,11,12,13, the molecular mechanisms involved in its specific activity are still unclear. Here, we describe how EB1 regulates the dynamics and structure of microtubules assembled from pure tubulin. We found that EB1 stimulates spontaneous nucleation and growth of microtubules, and promotes both catastrophes (transitions from growth to shrinkage) and rescues (reverse events). Electron cryomicroscopy showed that EB1 induces the initial formation of tubulin sheets, which rapidly close into the common 13-protofilament-microtubule architecture. Our results suggest that EB1 favours the lateral association of free tubulin at microtubule-sheet edges, thereby stimulating nucleation, sheet growth and closure. The reduction of sheet length at microtubule growing-ends together with the elimination of stressed microtubule lattices may account for catastrophes. Conversely, occasional binding of EB1 to the microtubule lattice may induce rescues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EB1 stimulates catastrophes and rescues.
Figure 2: EB1 stimulates microtubule self-assembly and promotes sheet formation and closure.
Figure 3: EB1 favours unskewed 13-protofilament microtubules while eliminating lattice defects.
Figure 4: Model for EB1 activity on microtubule assembly and dynamics.

Similar content being viewed by others

References

  1. Morrison, E. E. Action and interactions at microtubule ends. Cell. Mol. Life Sci. 64, 307–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Schuyler, S. C. & Pellman, D. Microtubule “plus-end-tracking proteins”. The end is just the beginning. Cell 105, 421–424. (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Rogers, S. L., Rogers, G. C., Sharp, D. J. & Vale, R.D . Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884. (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tirnauer, J. S., O'Toole, E., Berrueta, L., Bierer, B. E. & Pellman, D. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol. 145, 993–1007 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Busch, K. E. & Brunner, D. The microtubule plus end-tracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules. Curr. Biol. 14, 548–559 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Green, R. A., Wollman, R. & Kaplan, K. B. APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol. Biol. Cell 16, 4609–4622 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manna, T., Honnappa, S., Steinmetz, M. O. & Wilson, L. Suppression of microtubule dynamic instability by the +TIP irotein EB1 and its modulation by the CAP-Gly domain of p150(Glued). Biochemistry 47, 779–786 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Bieling, P. et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450, 1100–1105 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Sandblad, L. et al. The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam. Cell 127, 1415–1424 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Ligon, L. A., Shelly, S. S., Tokito, M. & Holzbaur, E. L. The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Mol. Biol. Cell 14, 1405–1417 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hayashi, I., Wilde, A., Mal, T. K. & Ikura, M. Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol. Cell 19, 449–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Tirnauer, J. S., Grego, S., Salmon, E. D. & Mitchison, T. J. EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol. Biol. Cell 13, 3614–3626 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakamura, M., Zhou, X. Z. & Lu, K. P. Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr. Biol. 11, 1062–1067 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Chrétien, D., Jánosi, I., Taveau, J. C. & Flyvbjerg, H. Microtubule's conformational cap. Cell Struct. Funct. 24, 299–303 (1999).

    Article  PubMed  Google Scholar 

  16. Mahadevan, L. & Mitchison, T. J. Cell biology: powerful curves. Nature 435, 895–897 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Hunyadi, V., Chrétien, D. & Jánosi, I. M. Mechanical stress induced mechanism of microtubule catastrophes. J. Mol. Biol. 348, 927–938 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Jánosi, I. M., Chrétien, D. & Flyvbjerg, H. Structural microtubule cap: stability, catastrophe, rescue, and third state. Biophys. J. 83, 1317–1330 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Amos, L. A. & Schlieper, D. Microtubules and maps. Adv. Protein Chem. 71, 257–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Ligon, L. A., Shelly, S. S., Tokito, M. K. & Holzbaur, E. L. Microtubule binding proteins CLIP-170, EB1, and p150Glued form distinct plus-end complexes. FEBS Lett. 580, 1327–1332 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Slep, K. C. & Vale, R. D. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol. Cell 27, 976–991 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walker, R. A. et al. Dynamic instability of individual microtubules analysed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107, 1437–1448 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Drechsel, D. N., Hyman, A. A., Cobb, M. H. & Kirschner, M. W. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3, 1141–1154 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chrétien, D., Fuller, S. D. & Karsenti, E. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell Biol. 129, 1311–1328 (1995).

    Article  PubMed  Google Scholar 

  25. Arnal, I., Heichette, C., Diamantopoulos, G. S. & Chretien, D. CLIP-170/tubulin-curved oligomers coassemble at microtubule ends and promote rescues. Curr. Biol. 14, 2086–2095 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Morrison, E. E., Wardleworth, B. N., Askham, J. M., Markham, A. F. & Meredith, D. M. EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 17, 3471–3477 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Detrich, H. W., 3rd, Jordan, M. A., Wilson, L. & Williams, R. C., Jr. Mechanism of microtubule assembly. Changes in polymer structure and organization during assembly of sea urchin egg tubulin. J. Biol. Chem. 260, 9479–9490 (1985).

    CAS  PubMed  Google Scholar 

  28. Wade, R. H., Chrétien, D. & Job, D. Characterization of microtubule protofilament numbers. How does the surface lattice accommodate? J. Mol. Biol. 212, 775–786 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Chrétien, D., Metoz, F., Verde, F., Karsenti, E. & Wade, R. H. Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J. Cell Biol. 117, 1031–1040 (1992).

    Article  PubMed  Google Scholar 

  30. Moores, C. A. et al. Mechanism of microtubule stabilization by doublecortin. Mol. Cell 14, 833–839 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Jánosi, I. M., Chrétien, D. & Flyvbjerg, H. Modeling elastic properties of microtubule tips and walls. Eur. Biophys. J. 27, 501–513 (1998).

    Article  PubMed  Google Scholar 

  32. Tilney, L. G. et al. Microtubules: evidence for 13 protofilaments. J. Cell Biol. 59, 267–275 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ashford, A. J., Andersen, S. S. & Hyman, A. A. Preparation of tubulin from bovine brain. in: Cell Biology: A Laboratory Handbook, 2nd edn Vol. 2 (ed. Celis, J. E.) 205–212 (Academic Press, San Diego, 1998).

    Google Scholar 

  34. Kocsis, E., Trus, B. L., Steer, C. J., Bisher, M. E. & Steven, A. C. Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. J. Struct. Biol. 107, 6–14 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Chrétien, D. & Fuller, S. D. Microtubules switch occasionally into unfavorable configurations during elongation. J. Mol. Biol. 298, 663–676 (2000).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to Niels Galjart for providing us with the mouse EB1 construct. We thank Didier Job, Fabrice Senger, Daniel Thomas and Odile Valiron for helpful discussions, and Jean-Paul Rolland for technical assistance with electron microscopy. This work was supported by grants from the Centre National de la Recherche Scientifique (CNRS), the Ministère de l'Enseignement Supérieur et de la Recherche (MESR) and Rennes Métropole. B. V. was supported by a predoctoral fellowship from the MESR and F. M. C. was supported by a postdoctoral fellowship from the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denis Chrétien or Isabelle Arnal.

Supplementary information

Supplementary Information

Supplementary Figures S1 and S2, Supplementary Table 1 and Supplementary Methods (PDF 456 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitre, B., Coquelle, F., Heichette, C. et al. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat Cell Biol 10, 415–421 (2008). https://doi.org/10.1038/ncb1703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1703

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing