Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers

Abstract

Transport from the endoplasmic reticulum (ER) to the Golgi complex requires assembly of the COPII coat complex at ER exit sites. Recent studies have raised the question as to whether in mammalian cells COPII coats give rise to COPII-coated transport vesicles or instead form ER sub-domains that collect proteins for transport via non-coated carriers. To establish whether COPII-coated vesicles do exist in vivo, we developed approaches to combine quantitative immunogold labelling (to identify COPII) and three-dimensional electron tomography (to reconstruct entire membrane structures). In tomograms of both chemically fixed and high-pressure-frozen HepG2 cells, immuno-labelled COPII was found on ER-associated buds as well as on free 50-nm diameter vesicles. In addition, we identified a novel type of COPII-coated structure that consists of partially COPII-coated, 150–200-nm long, dumb-bell-shaped tubules. Both COPII-coated carriers also contain the SNARE protein Sec22b, which is necessary for downstream fusion events. Our studies unambiguously establish the existence of free, bona fide COPII-coated transport carriers at the ER–Golgi interface, suggesting that assembly of COPII coats in vivo can result in vesicle formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ERES of high-pressure-frozen HepG2 cells.
Figure 2: COPII labelling of ERES in 2D- and 3D-electron microscopy.
Figure 3: 3D-electron microscopy of high-pressure frozen, rehydrated, COPII-labelled ERES.
Figure 4: Free COPII-coated carriers contain the v-SNARE protein Sec22b.

Similar content being viewed by others

References

  1. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Palade, G. Intracellular aspects of the process of protein biosynthesis. Science 189, 347–358 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. Sesso, A., de Faria, F. P., Iwamura, E. S. & Correa, H. A three-dimensional reconstruction study of the rough ER–Golgi interface in serial thin sections of the pancreatic acinar cell of the rat. J. Cell Sci. 107, 517–528 (1994).

    PubMed  Google Scholar 

  4. Bannykh, S. I., Rowe, T. & Balch, W. E. The organization of endoplasmic reticulum export complexes. J. Cell Biol. 135, 19–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Fan, J. Y., Roth, J. & Zuber, C. Ultrastructural analysis of transitional endoplasmic reticulum and pre-Golgi intermediates: a highway for cars and trucks. Histochem. Cell Biol. 120, 455–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Salama, N. R., Yeung, T. & Schekman, R. W. The Sec13p complex and reconstitution of vesicle budding from the ER with purified cytosolic proteins. EMBO J. 12, 4073–4082 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Xu, D. & Hay, J. C. Reconstitution of COPII vesicle fusion to generate a pre-Golgi intermediate compartment. J. Cell Biol. 167, 997–1003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fromme, J. C. & Schekman, R. COPII-coated vesicles: flexible enough for large cargo? Curr. Opin. Cell Biol. 17, 345–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Watson, P. et al. Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nature Cell Biol. 7, 48–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Stephens, D. J. et al. COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. J. Cell Sci. 113, 2177–2185 (2000).

    CAS  PubMed  Google Scholar 

  13. Mironov, A. A. et al. ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev. Cell 5, 583–594 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Koster, A. J. et al. Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120, 276–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Ziese, U. et al. Automated high-throughput electron tomography by pre-calibration of image shifts. J. Microsc. 205, 187–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Koster, A. J. & Klumperman, J. Electron microscopy in cell biology: integrating structure and function. Nature Rev. Mol. Cell Biol. 4, S6–S10 (2003).

    Google Scholar 

  17. Rabouille, C. & Spiro, R. G. Nonselective utilization of the endomannosidase pathway for processing glycoproteins by human hepatoma (HepG2) cells. J. Biol. Chem. 267, 11573–11578 (1992).

    CAS  PubMed  Google Scholar 

  18. Hay, J. C. et al. Localization, dynamics, and protein interactions reveal distinct roles for ER and Golgi SNAREs. J. Cell Biol. 141, 1489–1502 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klumperman, J. et al. The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J. Cell Sci. 111, 3411–3425 (1998).

    CAS  PubMed  Google Scholar 

  20. Murk, J. L. et al. Influence of aldehyde fixation on the morphology of endosomes and lysosomes: quantitative analysis and electron tomography. J. Microsc. 212, 81–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Geerts, W. J. C., Koster, A. J., Verkleij, A. J. & Humbel B. M. Electron microscopy tomography and localization of proteins and macromolecular complexes in cells. In Protein–protein interactions: A molecular cloning manual, 2nd edition (eds Golemis, E. & Adams, P.; Cold Spring Laboratory Press, New York, 2005).

    Google Scholar 

  22. Griffiths, G. S. V. Fine Structure Immunocytochemistry (Springer Verlag, Heidelberg, 1993).

    Book  Google Scholar 

  23. de Graaf, A. et al. Ultrastructural localization of nuclear matrix proteins in HeLa cells using silver-enhanced ultra-small gold probes. J. Histochem. Cytochem. 39, 1035–1045 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Leunissen, J. L. & van de Plas, P. UltraSmall gold probes and cryo-ultramicrotomy. In Immuno-gold electron microscopy in virus diagnosis and research. (eds Hyatt, A. D. & Eaton, B. T.; CRC Press, London, 1993).

    Google Scholar 

  25. Mastronarde, D. N. Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120, 343–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Hay, J. C., Chao, D. S., Kuo, C. S. & Scheller, R. H. Protein interactions regulating vesicle transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Cell 89, 149–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Sato, K. & Nakano, A. Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nature Struct. Mol. Biol. 12, 167–174 (2005).

    Article  CAS  Google Scholar 

  28. Leapman, R. D. Novel techniques in electron microscopy. Curr. Opin. Neurobiol. 14, 591–598 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Simpson, J. C., Nilsson, T. & Pepperkok, R. Biogenesis of tubular ER-to-Golgi transport intermediates. Mol. Biol. Cell 17, 723–737 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 24, 1537–1545 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koster, G., VanDuijn, M., Hofs, B. & Dogterom, M. Membrane tube formation from giant vesicles by dynamic association of motor proteins. Proc. Natl Acad. Sci. USA 100, 15583–15588 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klumperman, J. Transport between ER and Golgi. Curr. Opin. Cell Biol. 12, 445–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Ladinsky, M. S. et al. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144, 1135–1149 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lucic, V. Structural studies by electron tomography: from cells to molecules. Ann. Rev. Biochem. 74, 833–865 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Willingham, M. C. An alternative fixation-processing method for preembedding ultrastructural immunocytochemistry of cytoplasmic antigens: the GBS (glutaraldehyde-borohydride-saponin) procedure. J. Histochem. Cytochem. 31, 791–798 (1983).

    Article  CAS  PubMed  Google Scholar 

  36. Slot, J. W. et al. Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J. Cell Biol. 113, 123–135 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Walther, P. & Ziegler, A. Freeze substitution of high-pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water. J. Microsc. 208, 3–10 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. v. Peski and R. Scriwanek for assistance with figure and movie preparation. We also thank A. Verkleij for his continued support and gratefully acknowledge H. Geuze for critical reading of the manuscript. This work was supported by the Dutch Society for Scientific Research (NWO:FOM/ALW 805.47.051) awarded to A.J.K. and J.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Klumperman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1 and S2 (PDF 349 kb)

Supplementary Information

Supplementary Movie 1 (AVI 3718 kb)

Supplementary Information

Supplementary Movie 2 (AVI 4370 kb)

Supplementary Information

Supplementary Movie 3 (AVI 4540 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeuschner, D., Geerts, W., van Donselaar, E. et al. Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat Cell Biol 8, 377–383 (2006). https://doi.org/10.1038/ncb1371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1371

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing