Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins


Asymmetric division of Drosophila neuroblasts (NBs) and the Caenorhabditis elegans zygote uses polarity cues provided by the Par proteins, as well as heterotrimeric G-protein-signalling that is activated by a receptor-independent mechanism mediated by GoLoco/GPR motif proteins1,2. Another key component of this non-canonical G-protein activation mechanism is a non-receptor guanine nucleotide-exchange factor (GEF) for Gα, RIC-8, which has recently been characterized in C. elegans and in mammals3,4,5,6. We show here that the Drosophila Ric-8 homologue is required for asymmetric division of both NBs and pI cells. Ric-8 is necessary for membrane targeting of Gαi, Pins and Gβ13F, presumably by regulating multiple Gα subunit(s). Ric-8 forms an in vivo complex with Gαi and interacts preferentially with GDP–Gαi, which is consistent with Ric-8 acting as a GEF for Gαi. Comparisons of the phenotypes of Gαi, Ric-8, Gβ13F single and Ric-8;Gβ13F double loss-of-function mutants indicate that, in NBs, Ric-8 positively regulates Gαi activity. In addition, Gβγ acts to restrict Gαi (and GoLoco proteins) to the apical cortex, where Gαi (and Pins) can mediate asymmetric spindle geometry.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Ric-8 interacts preferentially with GDP–Gαi and complexes with Gαi and Pins.
Figure 2: Ric-8 is required for the asymmetric division of NBs by regulating membrane localization of Gαi and Pins.
Figure 3: Ric-8 is required for the asymmetric division of pI cells and Ric-8 is distributed in the cytosol in both NBs and pI cells.
Figure 4: Ric-8 is required for cortical localization and stability of Gβ13F.
Figure 5: ric-8;Gβ13F double GLC NBs display defects similar to NBs lacking ric-8 or i function.

Accession codes




  1. 1

    Wodarz, A. & Huttner, W. B. Asymmetric cell division during neurogenesis in Drosophila and vertebrates. Mech. Dev. 120, 1297–1309 (2003).

  2. 2

    Willard, F. S., Kimple, R. J. & Siderovski, D. P. Return of the GDI: the GoLoco motif in cell division. Annu. Rev. Biochem. 73, 925–951 (2004).

  3. 3

    Colombo, K. et al. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300, 1957–1961 (2003).

  4. 4

    Afshar, K. et al. RIC-8 is required for GPR-1/2-dependent Gα function during asymmetric division of C. elegans embryos. Cell 119, 219–230 (2004).

  5. 5

    Couwenbergs, C., Spilker, A. C. & Gotta, M. Control of embryonic spindle positioning and Gα activity by C. elegans RIC-8. Curr. Biol. 14, 1871–1876 (2004).

  6. 6

    Tall, G. G., Krumins, A. M. & Gilman, A. G. Mammalian Ric-8A (synembryn) is a heterotrimeric Gα protein guanine nucleotide exchange factor. J. Biol. Chem. 278, 8356–8362 (2003).

  7. 7

    Kaltschmidt, J. A., Davidson, C. M., Brown, N. H. & Brand, A. H. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nature Cell Biol. 2, 7–12 (2000).

  8. 8

    Cai, Y., Yu, F., Lin, S., Chia, W. & Yang, X. Apical complex genes control mitotic spindle geometry and relative size of daughter cells in Drosophila neuroblast and PI asymmetric divisions. Cell 112, 51–62 (2003).

  9. 9

    Fuse, N., Hisata, K., Katzen, A. L. & Matsuzaki, F. Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Curr. Biol. 13, 947–954 (2003).

  10. 10

    Yu, F., Cai, Y., Kaushik, R., Yang, X. & Chia, W. Distinct roles of Gαi and Gβ13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J. Cell Biol. 162, 623–633 (2003).

  11. 11

    Bardin, A. J., Le Borgne, R. & Schweisguth, F. Asymmetric localization and function of cell-fate determinants: a fly's view. Curr. Opin. Neurobiol. 14, 6–14 (2004).

  12. 12

    Cismowski, M. J., Takesono, A., Bernard, M. L., Duzic, E. & Lanier, S. M. Receptor-independent activators of heterotrimeric G-proteins. Life Sci. 68, 2301–2308 (2001).

  13. 13

    Kaltschmidt, J. A. & Brand, A. H. Asymmetric cell division: microtubule dynamics and spindle asymmetry. J. Cell Sci. 115, 2257–2264 (2002).

  14. 14

    Knust, E. G protein signaling and asymmetric cell division. Cell 107, 125–128 (2001).

  15. 15

    Doe, C. Q. & Bowerman, B. Asymmetric cell division: fly neuroblast meets worm zygote. Curr. Opin. Cell Biol. 13, 68–75 (2001).

  16. 16

    Jan, Y. N. & Jan, L. Y. Asymmetric cell division in the Drosophila nervous system. Nature Rev. Neurosci. 2, 772–779 (2001).

  17. 17

    Matsuzaki, F. Asymmetric division of Drosophila neural stem cells: a basis for neural diversity. Curr. Opin. Neurobiol. 10, 38–44 (2000).

  18. 18

    Bellaiche, Y. et al. The Partner of Inscuteable/Discs-large complex is required to establish planar polarity during asymmetric cell division in Drosophila. Cell 106, 355–366 (2001).

  19. 19

    Kimple, R. J., Kimple, M. E., Betts, L., Sondek, J. & Siderovski, D. P. Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits. Nature 416, 878–881 (2002).

  20. 20

    Izumi, Y., Ohta, N., Itoh-Furuya, A., Fuse, N. & Matsuzaki, F. Differential functions of G protein and Baz-aPKC signaling pathways in Drosophila neuroblast asymmetric division. J. Cell Biol. 164, 729–738 (2004).

  21. 21

    Gotta, M. & Ahringer, J. Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nature Cell Biol. 3, 297–300 (2001).

  22. 22

    Srinivasan, D. G., Fisk, R. M., Xu, H. & van den Heuvel, S. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes Dev. 17, 1225–1239 (2003).

  23. 23

    Tsou, M. F., Hayashi, A. & Rose, L. S. LET-99 opposes Gα/GPR signaling to generate asymmetry for spindle positioning in response to PAR and MES-1/SRC-1 signaling. Development 130, 5717–5730 (2003).

  24. 24

    Hess, H. A., Roper, J. C., Grill, S. W. & Koelle, M. R. RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell 119, 209–218 (2004).

  25. 25

    Schaefer, M., Petronczki, M., Dorner, D., Forte, M. & Knoblich, J. A. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107, 183–194 (2001).

  26. 26

    Bellen, H. J. et al. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761–781 (2004).

  27. 27

    Takida, S. & Wedegaertner, P. B. Heterotrimer formation, together with isoprenylation, is required for plasma membrane targeting of Gβγ. J. Biol. Chem. 278, 17284–17290 (2003).

  28. 28

    Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399–409 (2000).

  29. 29

    Gho, M. & Schweisguth, F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila. Nature 393, 178–181 (1998).

Download references


We thank H. Bellen, C.Q. Doe, D. Glover, Y.N. Jan, D. St Johnston, T. Kaufman, C. Klambt, J.A. Knoblich, E. Knust, F. Matsuzaki, S. Roth, F. Schweisguth, X. Yang, A. Wodarz, Developmental Studies Hybridoma Bank (University of Iowa) and the Bloomington Stock Center for generously providing antibodies and fly stocks. We thank F. S. Willard for discussion and support, and W. Chia thanks Y. Cai for stimulating discussions. This work was supported by Temasek Life Sciences Laboratory, Singapore Millennium Foundation (F. Y.) and Wellcome Trust (W. C.).

Author information

Correspondence to William Chia or Fengwei Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1, S2, S3 and S4 (PDF 580 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading