Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nrarp functions to modulate neural-crest-cell differentiation by regulating LEF1 protein stability

Abstract

Nrarp (Notch-regulated ankyrin repeat protein) is a small protein that has two ankyrin repeats1,2,3,4,5. Although Nrarp is known to be an inhibitory component of the Notch signalling pathway that operates in different developmental processes1,2,4,5, the in vivo roles of Nrarp have not been fully characterized. Here, we show that Nrarp is a positive regulator in the Wnt signalling pathway. In zebrafish, knockdown of Nrarp-a expression by an antisense morpholino oligonucleotide (MO) results in altered Wnt-signalling-dependent neural-crest-cell development. Nrarp stabilizes LEF1 protein, a pivotal transcription factor in the Wnt signalling cascade, by blocking LEF1 ubiquitination. In accordance with this, the knockdown phenotype of lef1 is similar to that of nrarp-a, at least in part, in its effect on the development of multiple tissues in zebrafish. Furthermore, activation of LEF1 does not affect Notch activity or vice versa. These findings reveal that Nrarp independently regulates canonical Wnt and Notch signalling by modulating LEF1 and Notch protein turnover, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Both nrarp-a and lef1 are involved in the development of neural-crest-cell derivatives.
Figure 2: Both nrarp-a and lef1 are involved in NCC migration.
Figure 3: nrarp-a and lef1 are required for Wnt signalling activity in NCC development.
Figure 4: Nrarp facilitates the canonical Wnt pathway via stabilizing LEF1.
Figure 5: Nrarp independently regulates Notch signalling and canonical Wnt signalling.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Krebs, L. T., Deftos, M. L., Bevan, M. J. & Gridley, T. The Nrarp gene encodes an ankyrin-repeat protein that is transcriptionally regulated by the notch signalling pathway. Dev. Biol. 238, 110–119 (2001).

    Article  CAS  Google Scholar 

  2. Lamar, E. et al. Nrarp is a novel intracellular component of the Notch signalling pathway. Genes Dev. 15, 1885–1899 (2001).

    Article  CAS  Google Scholar 

  3. Topczewska, J. M., Topczewski, J., Szostak, A., Solnica-Krezel, L. & Hogan, B. L. Developmentally regulated expression of two members of the Nrarp family in zebrafish. Gene Expr. Patterns 3, 169–171 (2003).

    Article  CAS  Google Scholar 

  4. Yun, T. J. & Bevan, M. J. Notch-regulated ankyrin-repeat protein inhibits Notch1 signalling: multiple Notch1 signalling pathways involved in T cell development. J. Immunol. 170, 5834–5841 (2003).

    Article  CAS  Google Scholar 

  5. Pirot, P., van Grunsven, L. A., Marine, J. C., Huylebroeck, D. & Bellefroid, E. J. Direct regulation of the Nrarp gene promoter by the Notch signalling pathway. Biochem. Biophys. Res. Commun. 322, 526–534 (2004).

    Article  CAS  Google Scholar 

  6. Moury, J. D. & Jacobson, A. G. The origins of neural crest cells in the axolotl. Dev. Biol. 141, 243–253 (1990).

    Article  CAS  Google Scholar 

  7. Yanfeng, W., Saint-Jeannet, J. P. & Klein, P. S. Wnt-frizzled signalling in the induction and differentiation of the neural crest. Bioessays 25, 317–325 (2003).

    Article  Google Scholar 

  8. Odenthal, J. & Nusslein-Volhard, C. fork head domain genes in zebrafish. Dev. Genes Evol. 208, 245–258 (1998).

    Article  CAS  Google Scholar 

  9. Luo, R., An, M., Arduini, B. L. & Henion, P. D. Specific pan-neural crest expression of zebrafish Crestin throughout embryonic development. Dev. Dyn. 220, 169–174 (2001).

    Article  CAS  Google Scholar 

  10. Dorsky, R. I., Moon, R. T. & Raible, D. W. Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370–373 (1998).

    Article  CAS  Google Scholar 

  11. Dorsky, R. I., Moon, R. T. & Raible, D. W. Environmental signals and cell fate specification in premigratory neural crest. Bioessays 22, 708–716 (2000).

    Article  CAS  Google Scholar 

  12. Dorsky, R. I., Sheldahl, L. C. & Moon, R. T. A transgenic Lef1/β-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev. Biol. 241, 229–237 (2002).

    Article  CAS  Google Scholar 

  13. Dorsky, R. I., Raible, D. W. & Moon, R. T. Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes Dev. 14, 158–162 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Peifer, M. & Polakis, P. Wnt signalling in oncogenesis and embryogenesis — a look outside the nucleus. Science 287, 1606–1609 (2000).

    Article  CAS  Google Scholar 

  15. Ishitani, T., Ninomiya-Tsuji, J. & Matsumoto, K. Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/β-catenin signalling. Mol. Cell. Biol. 23, 1379–1389 (2003).

    Article  CAS  Google Scholar 

  16. Dorsky, R. I. et al. Maternal and embryonic expression of zebrafish lef1. Mech. Dev. 86, 147–150 (1999).

    Article  CAS  Google Scholar 

  17. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signalling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  Google Scholar 

  18. Holley, S. A., Geisler, R. & Nusslein-Volhard, C. Control of her1 expression during zebrafish somitogenesis by a δ-dependent oscillator and an independent wave-front activity. Genes Dev. 14, 1678–1690 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signalling by Delta. Dev. Cell 4, 67–82 (2003).

    Article  CAS  Google Scholar 

  20. Takke, C., Dornseifer, P., v Weizsacker, E. & Campos-Ortega, J. A. her4, a zebrafish homologue of the Drosophila neurogenic gene E(spl), is a target of NOTCH signalling. Development 126, 1811–1821 (1999).

    CAS  PubMed  Google Scholar 

  21. Soriano, S. et al. Presenilin 1 negatively regulates β-catenin/T cell factor/lymphoid enhancer factor-1 signalling independently of β-amyloid precursor protein and notch processing. J. Cell Biol. 152, 785–794 (2001).

    Article  CAS  Google Scholar 

  22. Axelrod, J. D., Matsuno, K., Artavanis-Tsakonas, S. & Perrimon, N. Interaction between Wingless and Notch signalling pathways mediated by dishevelled. Science 271, 1826–1832 (1996).

    Article  CAS  Google Scholar 

  23. Ross, D. A. & Kadesch, T. The notch intracellular domain can function as a coactivator for LEF-1. Mol. Cell. Biol. 21, 7537–7544 (2001).

    Article  CAS  Google Scholar 

  24. Foltz, D. R., Santiago, M. C., Berechid, B. E. & Nye, J. S. Glycogen synthase kinase-3β modulates notch signalling and stability. Curr. Biol. 12, 1006–1011 (2002).

    Article  CAS  Google Scholar 

  25. Wettstein, D. A., Turner, D. L. & Kintner, C. The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signalling during primary neurogenesis. Development 124, 693–702 (1997).

    CAS  PubMed  Google Scholar 

  26. Kato, H. et al. Involvement of RBP-J in biological functions of mouse Notch1 and its derivatives. Development 124, 4133–4141 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Honjo and C. Kintner for providing plasmid vectors; R.T. Moon for providing TOPdGFP fish; R.I. Dorsky for sharing information on lef1 splicing MO; H. Matsuo for maintaining fish; and K. Matsumoto laboratory members for helpful discussions. This research was supported by special grants from CREST and the Advanced Research on Cancer from the Ministry of Education, Culture and Science of Japan (K.M.), and JSPS Research Fellowship for Young Scientists (T.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoyuki Itoh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1, S2, S3 and S4 plus Supplementary material and methods (PDF 513 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishitani, T., Matsumoto, K., Chitnis, A. et al. Nrarp functions to modulate neural-crest-cell differentiation by regulating LEF1 protein stability. Nat Cell Biol 7, 1106–1112 (2005). https://doi.org/10.1038/ncb1311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing