Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIβ at the Golgi complex

Abstract

Protein kinase D (PKD) regulates the fission of vesicles originating from the trans-Golgi network1,2. We show that phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ) — a key player in the structure and function of the Golgi complex3 — is a physiological substrate of PKD. Of the three PKD isoforms, only PKD1 and PKD2 phosphorylated PI4KIIIβ at a motif that is highly conserved from yeast to humans. PKD-mediated phosphorylation stimulated lipid kinase activity of PI4KIIIβ and enhanced vesicular stomatitis virus G-protein transport to the plasma membrane. The identification of PI4KIIIβ as one of the PKD substrates should help to reveal the molecular events that enable transport-carrier formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PKD–GFP and Flag–PI4KIIIβ co-localize at the Golgi compartment.
Figure 2: PKD phosphorylates Flag–PI4KIIIβ in vitro and in whole cells.
Figure 3: PKD phosphorylates Ser 294 in PI4KIIIβ.
Figure 4: Phosphorylation of PI4KIIIβ at Ser 294 is essential for lipid-kinase activity and is important for transport of VSVG-GFP.

Similar content being viewed by others

References

  1. Liljedahl, M. et al. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104, 409–420 (2001).

    Article  CAS  Google Scholar 

  2. Yeaman, C. et al. Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Nature Cell Biol. 6, 106–112 (2004).

    Article  CAS  Google Scholar 

  3. Godi, A. et al. ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nature Cell Biol. 1, 280–287 (1999).

    Article  CAS  Google Scholar 

  4. Rykx, A. et al. Protein kinase D: a family affair. FEBS Lett. 546, 81–86 (2003).

    Article  CAS  Google Scholar 

  5. Prestle, J., Pfizenmaier, K., Brenner, J. & Johannes, F. J. Protein kinase Cμ is located at the Golgi compartment. J. Cell Biol. 134, 1401–1410 (1996).

    Article  CAS  Google Scholar 

  6. Maeda, Y., Beznoussenko, G. V., Van Lint, J., Mironov, A. A. & Malhotra, V. Recruitment of protein kinase D to the trans-Golgi network via the first cysteine-rich domain. EMBO J. 20, 5982–5990 (2001).

    Article  CAS  Google Scholar 

  7. Baron, C. L. & Malhotra, V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295, 325–328 (2002).

    Article  CAS  Google Scholar 

  8. Jamora, C. et al. Gβγ-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell 98, 59–68 (1999).

    Article  CAS  Google Scholar 

  9. Anel, A. M. & Malhotra, V. PKCη is required for β1γ2/β3γ2- and PKD-mediated transport to the cell surface and the organization of the Golgi apparatus. J. Cell Biol. 169, 83–91 (2005).

    Article  CAS  Google Scholar 

  10. Hausser, A. et al. Structural requirements for localization and activation of protein kinase Cμ (PKCμ) at the Golgi compartment. J. Cell Biol. 156, 65–74 (2002).

    Article  CAS  Google Scholar 

  11. Waldron, R. T. et al. Activation loop Ser 744 and Ser 748 in protein kinase D are transphosphorylated in vivo. J. Biol. Chem. 276, 32606–32615 (2001).

    Article  CAS  Google Scholar 

  12. Walch-Solimena, C. & Novick, P. The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nature Cell Biol. 1, 523–525 (1999).

    Article  CAS  Google Scholar 

  13. Sciorra, V. A. et al. Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway. Mol. Biol. Cell 16, 776–793 (2005).

    Article  CAS  Google Scholar 

  14. Wang, Y. J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    Article  CAS  Google Scholar 

  15. Nakagawa, T., Goto, K. & Kondo, H. Cloning, expression, and localization of 230-kDa phosphatidylinositol 4-kinase. J. Biol. Chem. 271, 12088–12094 (1996).

    Article  CAS  Google Scholar 

  16. Godi, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nature Cell Biol. 6, 393–404 (2004).

    Article  CAS  Google Scholar 

  17. Doppler, H., Storz, P., Li, J., Comb, M. J. & Toker, A. A phosphorylation state-specific antibody recognizes HSP27, a novel substrate of protein kinase D. J. Biol. Chem. 280, 15013–15019 (2005).

    Article  Google Scholar 

  18. Nishikawa, K., Toker, A., Johannes, F. J., Songyang, Z. & Cantley, L. C. Determination of the specific substrate sequence motifs of protein kinase C isozymes. J. Biol. Chem. 272, 952–960 (1997).

    Article  CAS  Google Scholar 

  19. Hutti, J. E. et al. A rapid method for determining protein kinase phosphorylation specificity. Nature Methods 1, 27–29 (2004).

    Article  CAS  Google Scholar 

  20. Prigozhina, N. L. & Waterman-Storer, C. M. Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr. Biol. 14, 88–98 (2004).

    Article  CAS  Google Scholar 

  21. Suer, S., Sickmann, A., Meyer, H. E., Herberg, F. W. & Heilmeyer, L. M. Jr. Human phosphatidylinositol 4-kinase isoform PI4K92. Expression of the recombinant enzyme and determination of multiple phosphorylation sites. Eur. J. Biochem. 268, 2099–2106 (2001).

    Article  CAS  Google Scholar 

  22. Iglesias, T. et al. Identification and cloning of Kidins220, a novel neuronal substrate of protein kinase D. J. Biol. Chem. 275, 40048–40056 (2000).

    Article  CAS  Google Scholar 

  23. Arnold, R. et al. Activation of hematopoietic progenitor kinase 1 involves relocation, autophosphorylation, and transphosphorylation by protein kinase d1. Mol. Cell Biol. 25, 2364–2383 (2005).

    Article  CAS  Google Scholar 

  24. Balla, A., Tuymetova, G., Tsiomenko, A., Varnai, P. & Balla, T. A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol. Biol. Cell 16, 1282–1295 (2005).

    Article  CAS  Google Scholar 

  25. Storz, P., Doppler, H. & Toker, A. Protein kinase Cδ selectively regulates protein kinase D-dependent activation of NF-κB in oxidative stress signaling. Mol. Cell Biol. 24, 2614–2626 (2004).

    Article  CAS  Google Scholar 

  26. Storz, P. & Toker, A. Protein kinase D mediates a stress-induced NF-κB activation and survival pathway. EMBO J. 22, 109–120 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank L. Rameh for help with the lipid-kinase assay, and E. Behrle and O. Selchow for help with the confocal microscopy. This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 495 to K.P.), the Landesstiftung Baden-Württemberg (to A.H.) and from the National Institutes of Health (CA075134 to A.T.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angelika Hausser or Klaus Pfizenmaier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausser, A., Storz, P., Märtens, S. et al. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIβ at the Golgi complex. Nat Cell Biol 7, 880–886 (2005). https://doi.org/10.1038/ncb1289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing