Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Nicastrin is required for Presenilin-mediated transmembrane cleavage in Drosophila

Abstract

The transmembrane glycoprotein Nicastrin was identified in a complex with the multipass membrane protein Presenilin1. Presenilin mediates transmembrane cleavage of single-pass transmembrane proteins with short extracellular domains2, including the ligand-activated form of the receptor Notch3,4,5 and β-amyloid precursor protein (β-APP)6,7. Transmembrane cleavage of Notch is essential for signal transduction3,4,5, and transmembrane cleavage of β-APP generates pathogenic amyloid peptides implicated in Alzheimer's disease8. Here, we investigate the requirement for Nicastrin in Presenilin-mediated transmembrane cleavage. We show that, in Drosophila, loss of Nicastrin activity blocks the accumulation of Presenilin associated with the apical plasma membrane, abolishes Presenilin-dependent cleavage of the transmembrane domains of Notch and β-APP, and abrogates Notch signal transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nicastrin activity is required for Notch signalling.
Figure 2: Nicastrin is required for the transducing activity of transmembrane forms of Notch.
Figure 3: Nicastrin is required for cleavage of the Notch and β-APP transmembrane domains.
Figure 4: Nicastrin is required for the accumulation of Presenilin associated with the apical plasma membrane.

Similar content being viewed by others

References

  1. Yu, G. et al. Nature 407, 48–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Struhl, G. & Adachi, A. Mol. Cell 6, 625–636 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Struhl, G. & Greenwald, I. Nature 398, 522–525 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. De Strooper, B. et al. Nature 398, 518–522 (1999).

    Article  PubMed  Google Scholar 

  5. Song, W. et al. Proc. Natl Acad. Sci. USA 96, 6959–6963 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Strooper, B. et al. Nature 391, 387–390 (1998).

    Article  PubMed  Google Scholar 

  7. Wolfe, M. S. et al. Nature 398, 513–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Esler, W. P. & Wolfe, M. S. Science 293, 1449–1454 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Goutte, C., Hepler, W., Mickey, K. M. & Priess, J. R. Development 127, 2481–2492 (2000).

    CAS  PubMed  Google Scholar 

  10. Chen, F. et al. Nature Cell Biol. 3, 751–754 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Greenwald, I. Genes Dev. 12, 1751–1762 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Brou, C. et al. Mol. Cell 5, 207–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Mumm, J. S. et al. Mol. Cell 5, 197–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lieber, T., Kidd, S., Alcamo, E., Corbin, V. & Young, M. W. Genes Dev. 7, 1949–1965 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Kopan, R., Nye, J. S. & Weintraub, H. Development 120, 2385–2396 (1994).

    CAS  PubMed  Google Scholar 

  17. Struhl, G., Fitzgerald, K. & Greenwald, I. Cell 74, 331–345 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Rebay, I., Fehon, R. G. & Artavanis-Tsakonas, S. Cell 74, 319–329 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Struhl, G. & Greenwald, I. Proc. Natl Acad. Sci. USA 98, 229–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Struhl, G. & Adachi, A. Cell 93, 649–660 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Nowotny, P. et al. Mol. Cell. Neurosci. 15, 88–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Guo, Y., Livne-Bar, I., Zhou, L. & Boulianne, G. L. J. Neurosci. 19, 8435–8442 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ye, Y. & Fortini, M. E. Mech. Dev. 79, 199–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Fagan, R., Swindells, M., Overington, J. & Weir, M. Trends Biochem. Sci. 26, 213–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Nature 393, 382–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kidd, S., Lieber, T. & Young, M. W. Genes Dev. 12, 3728–3740 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lecourtois, M. & Schweisguth, F. Curr. Biol. 8, 771–774 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Chou, T. B. & Perrimon, N. Genetics 131, 643–653 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, T. & Luo, L. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Nolo, R., Abbott, L. A. & Bellen, H. J. Cell 102, 349–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Irvine, K. D. Curr. Opin. Genet. Dev. 9, 434–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Golic, K. G. & Lindquist, S. Cell 59, 499–509 (1988).

    Article  Google Scholar 

  33. Brand, A. H. & Perrimon, N. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The nctR46 allele was isolated, mapped and characterized as a neurogenic mutation by J. Jiang in a prior genetic screen; we gratefully acknowledge his contribution to the present work. We also thank A. Adachi for generating transgenic lines, T. Lee, L. Luo, P.M. Macdonald, H. Bellen and Developmental Studies Hybridoma Bank for providing fly stocks and antisera, I. Greenwald for discussion, and I. Greenwald, L. Johnston, R. Mann, and members of the Struhl lab for advice on the manuscript. H.-M. Chung is a research associate and G. Struhl an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Struhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, HM., Struhl, G. Nicastrin is required for Presenilin-mediated transmembrane cleavage in Drosophila. Nat Cell Biol 3, 1129–1132 (2001). https://doi.org/10.1038/ncb1201-1129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1201-1129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing