Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Eps8 controls actin-based motility by capping the barbed ends of actin filaments

Abstract

Actin filament barbed-end capping proteins are essential for cell motility, as they regulate the growth of actin filaments to generate propulsive force. One family of capping proteins, whose prototype is gelsolin, shares modular architecture, mechanism of action, and regulation through signalling-dependent mechanisms, such as Ca2+ or phosphatidylinositol-4,5-phosphate binding. Here we show that proteins of another family, the Eps8 family, also show barbed-end capping activity, which resides in their conserved carboxy-terminal effector domain. The isolated effector domain of Eps8 caps barbed ends with an affinity in the nanomolar range. Conversely, full-length Eps8 is auto-inhibited in vitro, and interaction with the Abi1 protein relieves this inhibition. In vivo, Eps8 is recruited to actin dynamic sites, and its removal impairs actin-based propulsion. Eps8-family proteins do not show any similarity to gelsolin-like proteins. Thus, our results identify a new family of actin cappers, and unveil novel modalities of regulation of capping through protein–protein interactions. One established function of the Eps8–Abi1 complex is to participate in the activation of the small GTPase Rac, suggesting a multifaceted role for this complex in actin dynamics, possibly through the participation in alternative larger complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eps8 'output' region binds F-actin and possesses filament barbed end-capping activity.
Figure 2: Eps8 family members function as barbed-end-capping proteins.
Figure 3: The filament barbed-end capping activity of Eps8 permits the reconstitution of actin-based motility in vitro.
Figure 4: Eps8 is required for optimal actin-based motility in vivo.
Figure 5: Eps8 activity modulated by association with Abi1.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  Google Scholar 

  2. Pantaloni, D., Le Clainche, C. & Carlier, M. F. Mechanism of actin-based motility. Science 292, 1502–1506 (2001).

    Article  CAS  Google Scholar 

  3. Bear, J. E., Krause, M. & Gertler, F. B. Regulating cellular actin assembly. Curr. Opin. Cell Biol. 13, 158–166 (2001).

    Article  CAS  Google Scholar 

  4. Cossart, P. Actin-based motility of pathogens: the Arp2/3 complex is a central player. Cell. Microbiol. 2, 195–205 (2000).

    Article  CAS  Google Scholar 

  5. Cooper, J. A. & Schafer, D. A. Control of actin assembly and disassembly at filament ends. Curr. Opin. Cell Biol. 12, 97–103 (2000).

    Article  CAS  Google Scholar 

  6. Zigmond, S. H. Formin-induced nucleation of actin filaments. Curr. Opin. Cell Biol. 16, 99–105 (2004).

    Article  CAS  Google Scholar 

  7. Schafer, D. A. et al. Visualization and molecular analysis of actin assembly in living cells. J. Cell Biol. 143, 1919–1930 (1998).

    Article  CAS  Google Scholar 

  8. Allen, P. G. Actin filament uncapping localizes to ruffling lamellae and rocketing vesicles. Nature Cell Biol. 5, 972–979 (2003).

    Article  CAS  Google Scholar 

  9. Yin, H. L. & Janmey, P. A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65, 761–789 (2003).

    Article  CAS  Google Scholar 

  10. Di Fiore, P. P. & Scita, G. Eps8 in the midst of GTPases. Int. J. Biochem. Cell Biol. 34, 1178–1183 (2002).

    Article  CAS  Google Scholar 

  11. Scita, G. et al. An effector region in Eps8 is responsible for the activation of the Rac- specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J. Cell Biol. 154, 1031–1044 (2001).

    Article  CAS  Google Scholar 

  12. Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. & Carlier, M. F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature Cell Biol. 2, 385–391 (2000).

    Article  CAS  Google Scholar 

  13. Offenhauser, N. et al. The eps8 family of proteins links growth factor stimulation to actin reorganization generating functional redundancy in the Ras/Rac pathway. Mol. Biol. Cell 15, 91–98 (2004).

    Article  Google Scholar 

  14. Tocchetti, A., Confalonieri, S., Scita, G., Di Fiore, P. P. & Betsholtz, C. In silico analysis of the EPS8 gene family: genomic organization, expression profile, and protein structure. Genomics 81, 234–244 (2003).

    Article  CAS  Google Scholar 

  15. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    Article  CAS  Google Scholar 

  16. Mounier, J. et al. Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J. Cell Sci. 112 (Pt 13), 2069–2080 (1999).

    Google Scholar 

  17. Shibata, T., Takeshima, F., Chen, F., Alt, F. W. & Snapper, S. B. Cdc42 facilitates invasion but not the actin-based motility of Shigella. Curr. Biol. 12, 341–345 (2002).

    Article  CAS  Google Scholar 

  18. Scita, G. et al. EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290–293 (1999).

    Article  CAS  Google Scholar 

  19. Mongiovi, A. M. et al. A novel peptide-SH3 interaction. EMBO J. 18, 5300–5309 (1999).

    Article  CAS  Google Scholar 

  20. McGough, A. M., Staiger, C. J., Min, J. K. & Simonetti, K. D. The gelsolin family of actin regulatory proteins: modular structures, versatile functions. FEBS Lett. 552, 75–81 (2003).

    Article  CAS  Google Scholar 

  21. Littlefield, R. & Fowler, V. M. Defining actin filament length in striated muscle: rulers and caps or dynamic stability? Annu. Rev. Cell Dev. Biol. 14, 487–525 (1998).

    Article  CAS  Google Scholar 

  22. Slupsky, C. M. et al. Structure of the Ets-1 pointed domain and mitogen-activated protein kinase phosphorylation site. Proc. Natl Acad. Sci. USA 95, 12129–12134 (1998).

    Article  CAS  Google Scholar 

  23. Croce, A. et al. A novel actin barbed-end-capping activity in Eps-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nature Cell Biol. 6, 1173–1179 (2004).

    Article  CAS  Google Scholar 

  24. Hofer, D., Jons, T., Kraemer, J. & Drenckhahn, D. From cytoskeleton to polarity and chemoreception in the gut epithelium. Ann. NY Acad. Sci. 859, 75–84 (1998).

    Article  CAS  Google Scholar 

  25. Witke, W., Li, W., Kwiatkowski, D. J. & Southwick, F. S. Comparisons of CapG and gelsolin-null macrophages: demonstration of a unique role for CapG in receptor-mediated ruffling, phagocytosis, and vesicle rocketing. J. Cell Biol. 154, 775–784 (2001).

    Article  CAS  Google Scholar 

  26. Witke, W. et al. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 81, 41–51 (1995).

    Article  CAS  Google Scholar 

  27. Steffen, A. et al. Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J. 23, 749–759 (2004).

    Article  CAS  Google Scholar 

  28. Kunda, P., Craig, G., Dominguez, V. & Baum, B. Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr. Biol. 13, 1867–1875 (2003).

    Article  CAS  Google Scholar 

  29. Innocenti, M. et al. Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nature Cell Biol. 6, 319–327 (2004).

    Article  CAS  Google Scholar 

  30. Bogdan, S. & Klambt, C. Kette regulates actin dynamics and genetically interacts with Wave and Wasp. Development 130, 4427–4437 (2003).

    Article  CAS  Google Scholar 

  31. Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin- based motility. J. Cell Biol. 146, 1319–1332 (1999).

    Article  CAS  Google Scholar 

  32. Wiesner, S. et al. A biomimetic motility assay provides insight into the mechanism of actin-based motility. J. Cell Biol. 160, 387–398 (2003).

    Article  CAS  Google Scholar 

  33. Geese, M. et al. Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed. J. Cell Sci. 113, 1415–1426 (2000).

    CAS  PubMed  Google Scholar 

  34. Lommel, S. et al. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep. 2, 850–857 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants: from AIRC (Associazione Italiana Ricerca sul Cancro) to G.S. and P.P.D.F.; from Human Science Frontier Program to G.S. and M.F.C. (grant RGP0072/2003-C), and to P.P.D.F.; from the Italian Ministry of Health (grant R.F. 02/184) to G.S.; from the 'French Ligue Nationale Contre le Cancer to M.F.C. 'équipe labellisée Ligue'; from the German research council (DFG, Str 666/1-1) to T.E.B.S.; from the Deutsche Akademische Austauschdienst (DAAD) and from the Fonds der Chemischen Industrie to J.W.; from European Community (VI Framework) to G.S. and P.P.D.F.; and from Fondazione Monzino to PPDF. We thank L. Cairns, P. Hagendorff and S. Bossi for technical help; and E. Helfer and S. Wiesner for assistance on actin polymerization and motility assays. We are grateful to T. Chakraborti for providing GFP-expressing L. monocytogenes and L. Machesky for Myc–PI(4,5)K. T.E.B.S. and D.D. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marie-France Carlier or Giorgio Scita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Disanza, A., Carlier, MF., Stradal, T. et al. Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol 6, 1180–1188 (2004). https://doi.org/10.1038/ncb1199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing