Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphorylation of the enteropathogenic E. coli receptor by the Src-family kinase c-Fyn triggers actin pedestal formation

Abstract

Enteropathogenic Escherichia coli (EPEC) causes diarrhoeal disease worldwide1. Pathogen adherence to host cells induces reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria2. This requires two bacterial virulence factors that mimic a ligand-receptor interaction. EPEC delivers its own receptor, the translocated intimin receptor (Tir), into the target cell plasma membrane, which is phosphorylated on interaction with the bacterial surface protein intimin3. Tir phosphorylated on Tyr 474 (ref. 4) binds the cellular adaptor Nck5,6, triggering actin polymerization7. Nevertheless, despite its critical role, the mechanism of Tir Tyr 474 phosphorylation remains unknown. Here, by artificially uncoupling Tir delivery and activity, we show that Tir phosphorylation and Nck-dependent pedestal formation require the Src-family kinase (SFK) c-Fyn. SFK inhibitors prevent Tyr 474 phosphorylation, and cells lacking c-fyn are resistant to pedestal formation. c-Fyn exclusively phosphorylates clustered Tir in vitro, and kinase knockdown suppresses Tir phosphorylation and pedestal formation in cultured cells. These results identify the transient interaction with host c-Fyn as a pivotal link between bacterial Tir and the cellular Nck–WASP–Arp2/3 cascade, illuminating a tractable experimental system in which to dissect tyrosine kinase signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clustering is required for Tir Tyr 474 phosphorylation.
Figure 2: Src family kinase inhibitors prevent Tir phosphorylation and actin pedestal formation in cultured cells.
Figure 3: Tir is a c-Fyn substrate both in cultured cells and in vitro.
Figure 4: Silencing of c-Fyn expression attenuates pedestal formation and Tir phosphorylation in cultured cells.

Similar content being viewed by others

References

  1. Nataro, J.P. & Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142–201 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Celli, J., Deng, W. & Finlay, B.B. Enteropathogenic Escherichia coli (EPEC) attachment to epithelial cells: exploiting the host cell cytoskeleton from the outside. Cell. Microbiol. 2, 1–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Kenny, B. Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol. Microbiol. 31, 1229–1241 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Campellone, K.G., Giese, A., Tipper, D.J. & Leong, J.M. A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localisation to actin pedestals. Mol. Microbiol. 43, 1227–1241 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Gruenheid, S. et al. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biol. 3, 856–859 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol. 1, 389–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Touzé, T., Hayward, R.D., Eswaran, J., Leong, J.M. & Koronakis, V. Self-association of EPEC intimin mediated by the β-barrel-containing anchor domain: a role in clustering of the Tir receptor. Mol. Microbiol. 51, 73–87 (2004).

    Article  PubMed  Google Scholar 

  9. Liu, H., Magoun, L., Luperchio, S., Schauer, D.B. & Leong, J.M. The Tir-binding region of enterhaemorrhagic Escherichia coli intimin is sufficient to trigger actin condensation after bacterial-induced host cell signalling. Mol. Microbiol. 34, 67–81 (1999).

    Article  PubMed  Google Scholar 

  10. Rosenshine, I., Donnenberg, M.S., Kaper, J.B. & Finlay, B.B. Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. EMBO J. 11, 3551–3560 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Campellone, K.G. et al. Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localised actin assembly. J. Cell Biol. 164, 407–416 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thomas, S.M. & Brugge, J.S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Songyang, Z. et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373, 536–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of Vaccinia virus. Nature 378, 636–638 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Selbach, M., Moese, S., Hauck, C.R., Meyer, T.F. & Backert, S. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J. Cell Biol. 277, 6775–6778 (2002).

    CAS  Google Scholar 

  16. Hanke, J.H. et al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Bain, J., McLauchlan, H., Elliott, M. & Cohen, P. The specificities of protein kinase inhibitors: an update. Biochem. J. 371, 199–204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klinghoffer, R.A., Sachsenmaier, C., Cooper, J.A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goosney, D.L., DeVinney, R. & Finlay, B.B. Recruitment of cytoskeletal and signalling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect. Immun. 69, 3315–3322 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayward, R.D. & Koronakis, V. Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends Cell Biol. 21, 15–20 (2002).

    Article  Google Scholar 

  21. Klausner, R.D. & Samelson, L.E. T cell antigen receptor activation pathways: the tyrosine kinase connection. Cell 64, 875–878 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Gauen, L.K. et al. Interactions of p59fyn and ZAP-70 with T-cell receptor activation motifs: defining the nature of a signalling motif. Mol. Cell. Biol. 14, 3729–3741 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Plattner, R., Kadlec, L., DeMali, K.A., Kazlauskas, A. & Pendergast, A.M. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev. 13, 2400–2411 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ilangumaran, S., Arni, S., van Echten-Deckert, G., Borisch, B. & Hoessli, D.C. Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol. Biol. Cell 10, 891–905 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Foger, N., Marhaba, R. & Zoller, M. Involvement of CD44 in cytoskeleton rearrangement and raft reorganisation in T cells. J. Cell Sci. 114, 1169–1178 (2001).

    CAS  PubMed  Google Scholar 

  27. Samelson, L.E., Phillips, A.F., Luong, E.T. & Klausner, R.D. Association of the Fyn protein-tyrosine kinase with the T-cell antigen receptor Proc. Natl Acad. Sci. USA 87, 4358–4362 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zobiack, N. et al. Cell-surface attachment of pedestal-forming enteropathogenic E. coli induces a clustering of raft components and a recruitment of annexin 2. J. Cell Sci. 115, 91–98 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Leong, D. Tipper, E. Koronakis and C. Hughes for discussions, C. ffrench-Constant and H. Colognato for discussions and advice on siRNA, and M. Way for the gift of kinase-knockout cell lines and helpful advice. This work was supported by a Wellcome Trust programme grant to V.K. and a Biotechnology and Biological Sciences Research Council studentship to N.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Koronakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Fig. S1 and Fig. S2 (PDF 1025 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, N., Hayward, R. & Koronakis, V. Phosphorylation of the enteropathogenic E. coli receptor by the Src-family kinase c-Fyn triggers actin pedestal formation. Nat Cell Biol 6, 618–625 (2004). https://doi.org/10.1038/ncb1148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing