Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P

Abstract

The molecular mechanisms underlying the formation of carriers trafficking from the Golgi complex to the cell surface are still ill-defined; nevertheless, the involvement of a lipid-based machinery is well established. This includes phosphatidylinositol 4-phosphate (PtdIns(4)P), the precursor for phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In yeast, PtdIns(4)P exerts a direct role, however, its mechanism of action and its targets in mammalian cells remain uncharacterized. We have identified two effectors of PtdIns(4)P, the four-phosphate-adaptor protein 1 and 2 (FAPP1 and FAPP2). Both proteins localize to the trans-Golgi network (TGN) on nascent carriers, and interact with PtdIns(4)P and the small GTPase ADP-ribosylation factor (ARF) through their plekstrin homology (PH) domain. Displacement or knockdown of FAPPs inhibits cargo transfer to the plasma membrane. Moreover, overexpression of FAPP-PH impairs carrier fission. Therefore, FAPPs are essential components of a PtdIns(4)P- and ARF-regulated machinery that controls generation of constitutive post-Golgi carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FAPPs localize to TGN exit sites.
Figure 2: Association of FAPPs with the TGN is dependent on PtdIns(4)P and regulated by ARF.
Figure 3: FAPP-PH is necessary and sufficient for targeting FAPPs to the TGN.
Figure 4: PtdIns(4)P-dependent and PtdIns(4)P-independent targeting of FAPP-PH.
Figure 5: FAPP-PH interacts with the small GTPase ARF.
Figure 6: FAPPs are required for TGN-to-plasma membrane transport.
Figure 7: FAPPs control the formation of transport carriers at the TGN.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998).

    Article  CAS  Google Scholar 

  2. Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nature Cell Biol. 5, 126–136 (2003).

    Article  CAS  Google Scholar 

  3. Polishchuk, R.S. et al. Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J. Cell Biol. 148, 45–58 (2000).

    Article  CAS  Google Scholar 

  4. Bankaitis, V.A., Malehorn, D.E., Emr, S.D. & Greene, R. The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J. Cell Biol. 108, 1271–1281 (1989).

    Article  CAS  Google Scholar 

  5. Jones, S.M., Alb, J.G., Phillips, S.E. Jr, Bankaitis, V.A. & Howell, K.E. A phosphatidylinositol 3-kinase and phosphatidylinositol transfer protein act synergistically in formation of constitutive transport vesicles from the trans-Golgi network. J. Biol. Chem. 273, 10349–10354 (1998).

    Article  CAS  Google Scholar 

  6. Simon, J.P. et al. An essential role for the phosphatidylinositol transfer protein in the scission of coatomer-coated vesicles from the trans-Golgi network. Proc. Natl Acad. Sci. USA 95, 11181–11186 (1998).

    Article  CAS  Google Scholar 

  7. Baron, C.L. & Malhotra, V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295, 325–328 (2002).

    Article  CAS  Google Scholar 

  8. De Matteis, M., Godi, A. & Corda, D. Phosphoinositides and the Golgi complex. Curr. Opin. Cell Biol. 14, 434–447 (2002).

    Article  CAS  Google Scholar 

  9. Audhya, A., Foti, M. & Emr, S.D. Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol. Biol. Cell 11, 2673–2689 (2000).

    Article  CAS  Google Scholar 

  10. Hama, H., Schnieders, E.A., Thorner, J., Takemoto, J.Y. & DeWald, D.B. Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274, 34294–34300 (1999).

    Article  CAS  Google Scholar 

  11. Walch-Solimena, C. & Novick, P. The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nature Cell Biol. 1, 523–525 (1999).

    Article  CAS  Google Scholar 

  12. Li, X. et al. Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J. Cell Biol. 157, 63–77 (2002).

    Article  CAS  Google Scholar 

  13. Wei, Y.J. et al. Type II phosphatidylinositol 4-kinase beta is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP. J. Biol. Chem. 277, 46586–46593 (2002).

    Article  CAS  Google Scholar 

  14. Nakagawa, T., Goto, K. & Kondo, H. Cloning, expression, and localization of 230-kDa phosphatidylinositol 4-kinase. J. Biol. Chem. 271, 12088–12094 (1996).

    Article  CAS  Google Scholar 

  15. Wong, K., Meyers, R. & Cantley, L.C. Subcellular locations of phosphatidylinositol 4-kinase isoforms. J. Biol. Chem. 272, 13236–13241 (1997).

    Article  CAS  Google Scholar 

  16. Godi, A. et al. ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nature Cell Biol. 1, 280–287 (1999).

    Article  CAS  Google Scholar 

  17. Bruns, J.R., Ellis, M.A., Jeromin, A. & Weisz, O.A. Multiple roles for phosphatidylinositol 4-kinase in biosynthetic transport in polarized Madin-Darby canine kidney cells. J. Biol. Chem. 277, 2012–2018 (2002).

    Article  CAS  Google Scholar 

  18. Wang, Y.L. et al. Phosphotidylinositol 4 phosphate regulates tageting of clathrin adaptor AP1 complexes to the Golgi. Cell 114, 299–310 (2003).

    Article  CAS  Google Scholar 

  19. Dowler, S. et al. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide binding specificities. Biochem. J. 351, 19–31 (2000).

    Article  CAS  Google Scholar 

  20. Lin, X., Mattjus, P., Pike, H.M., Windebank, A.J. & Brown, R.E. Cloning and expression of glycolipid transfer protein from bovine and porcine brain. J. Biol. Chem. 275, 5104–5110 (2000).

    Article  CAS  Google Scholar 

  21. Prescott, E.D. & Julius, D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300, 1284–1288 (2003).

    Article  CAS  Google Scholar 

  22. Wiedemann, C., Schafer, T. & Burger, M.M. Chromaffin granule-associated phosphatidylinositol 4-kinase activity is required for stimulated secretion. EMBO J. 15, 2094–2101 (1996).

    Article  CAS  Google Scholar 

  23. Donaldson, J.G., Finazzi, D. & Klausner, R.D. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360, 350–352 (1992).

    Article  CAS  Google Scholar 

  24. Helms, J.B. & Rothman, J.E. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360, 352–354 (1992).

    Article  CAS  Google Scholar 

  25. Levine, T.P. & Munro, S. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr. Biol. 12, 695–704 (2002).

    Article  CAS  Google Scholar 

  26. Stefan, C.J., Audhya, A. & Emr, S.D. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol. Biol. Cell 13, 542–557 (2002).

    Article  CAS  Google Scholar 

  27. Cohen, G.B., Ren, R. & Baltimore, D. Modular binding domains in signal transduction proteins. Cell 80, 237–248 (1995).

    Article  CAS  Google Scholar 

  28. Randazzo, P.A., Nie, Z., Miura, K. & Hsu, V.W. Molecular aspects of the cellular activities of ADP-ribosylation factors. Sci. STKE 59, DOI: 10.1126/stke.2000.59.re1 (2002).

  29. Antonny, B., Huber, I., Paris, S., Chabre, M. & Cassel, D. Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J. Biol. Chem. 272, 30848–30851 (1997).

    Article  CAS  Google Scholar 

  30. Jacques, K.M. et al. Arf1 dissociates from the clathrin adaptor GGA prior to being inactivated by Arf GTPase-activating proteins. J. Biol. Chem. 277, 47235–47241 (2002).

    Article  CAS  Google Scholar 

  31. Puertollano, R., Randazzo, P.A., Presley, J.F., Hartnell, L.M. & Bonifacino, J.S. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell 105, 93–102 (2001).

    Article  CAS  Google Scholar 

  32. Yao, L., Kawakami, Y. & Kawakami, T. The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc. Natl Acad. Sci. USA 91, 9175–9179 (1994).

    Article  CAS  Google Scholar 

  33. Touhara, K., Inglese, J., Pitcher, J.A., Shaw, G. & Lefkowitz, R.J. Binding of G protein beta gamma-subunits to pleckstrin homology domains. J. Biol. Chem. 269, 10217–10220 (1994).

    CAS  PubMed  Google Scholar 

  34. Snyder, J.T., Singer, A.U., Wing, M.R., Harden, T.K. & Sondek, J. The pleckstrin homology domain of phospholipase C-beta2 as an effector site for Rac. J. Biol. Chem. 278, 21099–21104 (2003).

    Article  CAS  Google Scholar 

  35. Rossman, K.L. et al. A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. EMBO J. 21, 1315–1326 (2002).

    Article  CAS  Google Scholar 

  36. Burger, K.N. Greasing membrane fusion and fission machineries. Traffic 1, 605–613 (2000).

    Article  CAS  Google Scholar 

  37. Corda, D., Hidalgo-Carcedo, C., Bonazzi, M., Luini, A. & Spano, S. Molecular aspects of membrane fission in the secretory pathway. Cell. Mol. Life Sci. 59, 1819–1832 (2002).

    Article  CAS  Google Scholar 

  38. Ikonen, E. & Simons, K. Protein and lipid sorting from the trans-Golgi network to the plasma membrane in polarized cells. Semin. Cell Dev. Biol. 9, 503–509 (1998).

    Article  CAS  Google Scholar 

  39. Raya, A. et al. Goodpasture antigen-binding protein, the kinase that aphosphorylates the goodpasture antigen, is an alternatively spliced variant implicated in autoimmune pathogenesis. J. Biol. Chem. 275, 40392–40399 (2000).

    Article  CAS  Google Scholar 

  40. Soccio, R.E. & Breslow, J.L. StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J. Biol. Chem. 278, 22183–22186 (2003).

    Article  CAS  Google Scholar 

  41. Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003).

    Article  CAS  Google Scholar 

  42. Marra, P. et al. The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nature Cell Biol. 3, 1101–1113 (2001).

    Article  CAS  Google Scholar 

  43. Godi, A. et al. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc. Natl Acad. Sci. USA 95, 8607–8612 (1998).

    Article  CAS  Google Scholar 

  44. Randazzo, P.A. & Kahn, R.A. Myristoylation and ADP-ribosylation factor function. Methods Enzymol. 250, 394–405 (1995).

    Article  CAS  Google Scholar 

  45. Buccione, R. et al. Regulation of constitutive exocytic transport by membrane receptors. A biochemical and morphometric study. J. Biol. Chem. 271, 3523–3533 (1996).

    Article  CAS  Google Scholar 

  46. Lucocq, J.M. in Fine Structure Immunocytochemistry (ed. Griffiths, G.) 279–302 (Springer, Berlin, 1993).

    Book  Google Scholar 

Download references

Acknowledgements

We thank B. Antonny for providing reagents. We are also grateful to A. Luini, V. Malhotra, and to the members of the Golgi group of the Consorzio Mario Negri Sud for discussions. We thank C. Berrie for reading the manuscript and E. Fontana for artwork preparation. This work was supported in part by the Italian Association for Cancer Research, Telethon Italia, the European Community and the Italian Ministry of Education. A.D.C. and T.D. are supported by fellowships from the Italian Foundation of Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Antonietta De Matteis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godi, A., Campli, A., Konstantakopoulos, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6, 393–404 (2004). https://doi.org/10.1038/ncb1119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing