Abstract
The precise biochemical role of N-ethylmaleimide-sensitive factor (NSF) in membrane fusion mediated by SNARE proteins is unclear. To provide further insight into the function of NSF, we have introduced a mutation into mammalian NSF that, in Drosophila dNSF-1, leads to temperature-sensitive neuroparalysis. This mutation is like the comatose mutation and renders the mammalian NSF temperature sensitive for fusion of postmitotic Golgi vesicles and tubules into intact cisternae. Unexpectedly, at the temperature that is permissive for membrane fusion, this mutant NSF binds to, but cannot disassemble, SNARE complexes and exhibits almost no ATPase activity. A well-charaterized NSF mutant containing an inactivating point mutation in the catalytic site of its ATPase domain is equally active in the Golgi-reassembly assay. These data indicate that the need for NSF during postmitotic Golgi membrane fusion may be distinct from its ATPase-dependent ability to break up SNARE pairs.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Confalonieri, F. & Duguet, M. A 200-amino acid ATPase module in search of a basic function. Bioessays 17, 639–650 (1995).
Patel, S. & Latterich, M. The AAA team: related ATPases with diverse functions. Trends Cell Biol. 8, 65–71 (1998).
Block, M. R., Glick, B. S., Wilcox, C. A., Wieland, F. T. & Rothman, J. E. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. Natl Acad. Sci. USA 85, 7852–7856 ( 1988).
Wilson, D. W. et al. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339, 355–359 (1989).
Malhotra, V., Orci, L., Glick, B. S., Block, M. R. & Rothman, J. E. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack . Cell 54, 221–227 (1988).
Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).
Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion . Nature 362, 318–324 (1993).
Clary, D. O., Griff, I. C. & Rothman, J. E. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61, 709–721 (1990).
Ferro-Novick, S. & Jahn, R. Vesicle fusion from yeast to man. Nature 370, 191– 193 (1994).
Sudhof, T. C. The synaptic vesicle cycle: a cascade of protein–protein interactions . Nature 375, 645–653 (1995).
Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution . Nature 395, 347–353 (1998).
Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 ( 1998).
Peters, C. & Mayer, A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575–579 ( 1998).
Ungermann, C., Sato, K. & Wickner, W. Defining the functions of trans-SNARE pairs. Nature 396, 543–548 ( 1998).
Fleming, K. G. et al. A revised model for the oligomeric state of the N-ethylmaleimide-sensitive fusion protein. J. Biol. Chem. 273, 15675 –15681 (1998).
Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523– 535 (1997).
Tagaya, M., Wilson, D. W., Brunner, M., Arango, N. & Rothman, J. E. Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. J. Biol. Chem. 268, 2662–2666 ( 1993).
Nagiec, E. E., Bernstein, A. & Whiteheart, S. W. Each domain of the N-ethylmaleimide-sensitive fusion protein contributes to its transport activity. J. Biol. Chem. 270, 29182–29188 (1995).
Whiteheart, S.W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126, 945–954 ( 1994).
Otto, H., Hanson, P. I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl Acad. Sci. USA 94, 6197–6201 (1997).
Ungermann, C., Nichols, B. J., Pelham, H. R. & Wickner, W. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolate vacuoles, is disassembled and activated for docking and fusion. J. Cell Biol. 140, 61–69 (1998).
Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996).
Wilson, D. W., Whiteheart, S. W., Wiedmann, M., Brunner, M. & Rothman, J. E. A multisubunit particle implicated in membrane fusion. J. Cell Biol. 117, 531 –538 (1992).
Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).
Xu, Z., Sato, K. & Wickner, W. LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion . Cell 93, 1125–1134 (1998).
Xu, Z., Mayer, A., Muller, E. & Wickner, W. A heterodimer of thioredoxin and I(B)2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J. Cell Biol. 136, 299– 306 (1997).
Barlowe, C. Coupled ER to Golgi transport reconstituted with purified cytosolic proteins . J. Cell Biol. 139, 1097– 1108 (1997).
Cabrera-poch, N., Pepperkok, R. & Shima, D. T. Inheritance of the mammalian Golgi apparatus during the cell cycle. Biochim. Biophys. Acta 1404, 139–151 (1998).
Lucocq, J. M., Pryde, J. G., Berger, E. G. & Warren, G. A mitotic form of the Golgi apparatus in HeLa cells. J. Cell Biol. 104, 865–874 ( 1987).
Lucocq, J. M., Berger, E. G. & Warren, G. Mitotic Golgi fragments in HeLa cells and their role in the reassembly pathway. J. Cell Biol. 109, 463–474 (1989).
Rabouille, C., Levine, T. P., Peters, J. M. & Warren, G. An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82, 905– 914 (1995).
Siddiqi, O. & Benzer, S. Neurophysiological defects in termperature-sensitive paralytic mutants of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 73, 3253–3257 (1976).
Pallanck, L., Ordway, R. W. & Ganetzky, B. A Drosophila NSF mutant. Nature 376, 25 (1995).
Littleton, J. T. et al. Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and diassembly. Neuron 21, 401–413 ( 1998).
Rabouille, C., Misteli, T., Watson, R. & Warren, G. Reassembly of Golgi stacks from mitotic Golgi fragments in a cell-free system. J. Cell Biol. 129, 605–618 ( 1995).
Rabouille, C. et al. Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92, 603– 610 (1998).
Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051 –5061 (1994).
Steel, G. J. & Morgan, A. Selective stimulation of the D1 ATPase domain of N-ethylmaleimide-sensitive fusion protein (NSF) by soluble NSF attachment proteins. FEBS Lett. 423, 113– 116 (1998).
Colombo, M. I., Taddese, M., Whiteheart, S. W. & Stahl, P. D. A possible predocking attachment site for N-ethylmaleimide-sensitive fusion protein. Insights from in vitro endosome fusion. J. Biol. Chem. 271, 18810–18816 ( 1996).
Lenzen, C.U., Steinman, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525– 536 (1998).
Cao, X. C., Ballew, N. & Barlowe, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J. 17, 2156–2165 (1998).
Hong, R. M. et al. Association of N-ethylmaleimide-sensitive factor with synaptic vesicles. FEBS Lett. 350, 253– 257 (1994).
Steel, G. J., Tagaya, M. & Woodman, P. G. Association of the fusion protein NSF with clathrin-coated vesicle membranes. EMBO J. 15, 745– 752 (1996).
Otter-Nilsson, M., Hendriks, R., Pecheur, E. I., Hoekstra, D. & Nilsson, T. Cytosolic ATPases, p97 and NSF, are sufficient to mediate rapid membrane fusion. EMBO J. 18, 2074–2083 (1999).
Inoue, A., Obata, K. & Akagawa, K. Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. J. Biol. Chem. 267, 10613–10619 (1992).
Edelmann, L., Hanson, P. I., Chapman, E. R. & Jahn, R. Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. EMBO J. 14, 224–231 (1995).
Hui, N., Nakamura, N., Slusarewicz, P. & Warren, G. in Cell Biology: A Laboratory Handbook (ed. Celis, J.) 46– 55 (Academic, London, 1998).
Hui, N. et al. An isoform of the Golgi t-SNARE, syntaxin 5, with an endoplasmic reticulum retrieval signal. Mol. Biol. Cell 8, 1777–1787 (1997).
Nagahama, M. et al. A v-SNARE implicated in intra-Golgi transport. J. Cell Biol. 133, 507–516 (1996).
Huttner, W. B., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96, 1374– 1388 (1983).
Acknowledgements
We thank S. Whiteheart for providing the CHO NSF cDNA; N. Bishop and P. Woodman for providing the D1 and D2 ATPase mutants; T. Söllner for the purified anti-GOS-28 antibodies; M. Lowe for purified p115; and H. Meyer and M. Lowe for critical reading of the manuscript. J.M.M.M. was supported by the Boehringer Ingelheim Fonds.
Correspondence and requests for materials should be addressed to D.T.S.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Müller, J., Rabouille, C., Newman, R. et al. An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion. Nat Cell Biol 1, 335–340 (1999). https://doi.org/10.1038/14025
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/14025
This article is cited by
-
Reconstitution of the cell cycle-regulated Golgi disassembly and reassembly in a cell-free system
Nature Protocols (2010)
-
Snares and munc18 in synaptic vesicle fusion
Nature Reviews Neuroscience (2002)
-
NSF is up to new tricks
Nature Cell Biology (1999)