Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RGS16 inhibits signalling through the Gα13–Rho axis

Abstract

Gα13 stimulates the guanine nucleotide exchange factors (GEFs) for Rho, such as p115Rho-GEF1. Activated Rho induces numerous cellular responses, including actin polymerization, serum response element (SRE)-dependent gene transcription and transformation2. p115Rho-GEF contains a Regulator of G protein Signalling domain (RGS box) that confers GTPase activating protein (GAP) activity towards Gα12 and Gα13 (ref. 3). In contrast, classical RGS proteins (such as RGS16 and RGS4) exhibit RGS domain-dependent GAP activity on Gαi and Gαq, but not Gα12 or Gα13 (ref 4). Here, we show that RGS16 inhibits Gα13-mediated, RhoA-dependent reversal of stellation and SRE activation. The RGS16 amino terminus binds Gα13 directly, resulting in translocation of Gα13 to detergent-resistant membranes (DRMs) and reduced p115Rho-GEF binding. RGS4 does not bind Gα13 or attenuate Gα13-dependent responses, and neither RGS16 nor RGS4 affects Gα12-mediated signalling. These results elucidate a new mechanism whereby a classical RGS protein regulates Gα13-mediated signal transduction independently of the RGS box.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of Gα13-mediated rounding and SRE activation by RGS16.
Figure 2: Regulation of LPA-evoked, Gα13-mediated signalling in MCF-7 cells.
Figure 3: RGS16, but not RGS4, selectively binds Gα13.
Figure 4: RGS–Gα13 interaction and inhibition of Gα13QL signalling requires the RGS16 amino terminus.
Figure 5: RGS16 is associated with Gα13 translocation to lipid rafts and reduced Gα13 binding to p115Rho-GEF.

Similar content being viewed by others

References

  1. Hart, M.J. et al. Direct stimulation of the guanine nucleotide exchange activity of p115RhoGEF by Gα13. Science 280, 2112–2114 (1998).

    Article  CAS  Google Scholar 

  2. Sah, V.P., Seasholtz, T.M., Sagi, S.A. & Brown, J.H. The role of Rho in G protein-coupled receptor signal transduction. Annu. Rev. Pharm. Toxicol. 40, 459–489 (2000).

    Article  CAS  Google Scholar 

  3. Fukuhara, S., Chikumi, H. & Gutkind, J.S. RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 20, 1661–1668 (2001).

    Article  CAS  Google Scholar 

  4. Ross, E.M. & Wilkie, T.M. GTPase-activating proteins for heterotrimeric G proteins: regulator of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795–827 (2000).

    Article  CAS  Google Scholar 

  5. Schmitz, A.A.P., Govek, E.E., Boettner, B., & Van Aelst, L. Rho GTPases: signaling, migration, and invasion. Exp. Cell Res. 261, 1–12 (2000).

    Article  CAS  Google Scholar 

  6. Seizinger, B.R., Gutkind, J.S. & Kley, N. The p53 tumor suppressor targets a novel regulator of G protein signaling. Proc. Natl. Acad. Sci. U.S.A. 94, 7868–7872 (1997).

    Article  Google Scholar 

  7. Majumdar, M., Seasholtz, T.M., Buckmaster, C., Toksoz, D. & Brown, J.H. A Rho exchange factor mediates thrombin and Gα12-induced-induced cytoskeletal responses. J. Biol. Chem. 274, 26815–26821 (1999).

    Article  CAS  Google Scholar 

  8. Arai, K. et al. Differential requirement of Gα12, Gα13, Gαq, and Gβγfor endothelin-1-induced JNK kinase and MAP kinase activation. Mol. Pharm. 63, 478–488 (2003).

    Article  CAS  Google Scholar 

  9. Chen, C., Seow, K.T., Guo, K., Yaw, L.P. & Lin S.C. Characterization of a novel mammalian RGS protein that binds Gα and inhibits pheromone signaling in yeast. J. Biol. Chem. 272, 8679–8685 (1997).

    Article  CAS  Google Scholar 

  10. Contos, J.J., Ishii, I. & Chun, J. Lysophosphatidic acid receptors. Mol. Pharmacol. 58, 1188–1209 (2000).

    Article  CAS  Google Scholar 

  11. Schwartz, B.M. et al. Lysophosphatidic acids increase interleukin-8 expression in ovarian cancer cells. Gynecol. Oncol. 2, 291–300 (2001).

    Article  Google Scholar 

  12. Druey, K.M., Blumer, K.J., Kang, V.H. & Kehrl, J.H. Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature 379, 742–746 (1996).

    Article  CAS  Google Scholar 

  13. Booden, M.A., Siderovski, D.P. & Der, C.J. Leukemia-associated Rho guanine nucleotide exchange factor promotes Gαq-coupled activation of RhoA. Mol. Cell. Biol. 22, 4053–4061 (2002).

    Article  CAS  Google Scholar 

  14. Krendel, M., Zenke, F. & Bokoch, G.M. Nucleotide exchange factor GEF-H1 mediates cross talk between microtubules and the actin cytoskeleton. Nature Cell. Biol. 4, 294–301 (2002).

    Article  CAS  Google Scholar 

  15. Kozasa T. et al. p115RhoGEF, a GTPase activating protein for Gα12 and Gα13. Science 280, 2109–2111 (1998).

    Article  CAS  Google Scholar 

  16. Berman, D.M., Kozasa, T. & Gilman, A.G. The GTPase activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J. Biol. Chem. 271, 27209–27212 (1996).

    Article  CAS  Google Scholar 

  17. Popov, S., Yu, K., Kozasa, T. & Wilkie T.M. the regulators of G protein signaling (RGS) domains of RGS4, RGS10, and GAIP retain GTPase activating protein activity in vitro. Proc. Natl Acad. Sci. USA. 94, 7216–7220 (1997).

    Article  CAS  Google Scholar 

  18. Derrien, A. et al. Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability. J. Biol. Chem. 278, 16107–16116 (2003).

    Article  CAS  Google Scholar 

  19. Battacharyya, R. & Wedegaertner, P.B. Gα13 requires palmitoylation for plasma membrane localization, Rho-dependent signaling, and promotion of p115RhoGEF membrane binding. J. Biol. Chem. 275, 14992–14999 (2000).

    Article  Google Scholar 

  20. Hiol, A. et al. Palmitoylation regulates RGS16 function I. Mutation of amino terminal cysteine residues on RGS16 prevents its targeting to lipid rafts and palmitoylation of an internal cysteine residue. J. Biol. Chem. 278, 19301–19308 (2003).

    Article  CAS  Google Scholar 

  21. Waheed, A.A. & Jones, T.L.Z. Hsp90 interactions and acylation target the G protein Gα12, but not Gα13 to lipid rafts. J. Biol. Chem. 277, 32409–32412 (2002).

    Article  CAS  Google Scholar 

  22. Ingi, T. et al. Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J. Neurosci. 18, 7178–7188 (1998).

    Article  CAS  Google Scholar 

  23. Bernstein, L.S., Grillo, A.A., Loranger, S.S. & Linder, M.E. RGS4 binds to membranes through an amphipathic alpha helix. J. Biol. Chem. 275, 18520–18526 (2000).

    Article  CAS  Google Scholar 

  24. Druey, K.M., Uger, O., Caron, J.M., Chen, C.K., Backlund, P.S. & Jones, T.L. Amino terminal cysteine residues of RGS16 are required for palmitoylation and modulation of Gi and Gq mediated signaling. J. Biol. Chem. 274, 18836–18842 (1999).

    Article  CAS  Google Scholar 

  25. Sullivan, B.M. et al. RGS4 and RGS2 bind coatomer and inhibit COPI association with Golgi membranes and intracellular transport. Mol. Biol. Cell 11, 3155–3168 (2000).

    Article  CAS  Google Scholar 

  26. Wells, C.D., Jiang, X., Gutowski, S. & Sternweis, P.C. Functional characterization of p115RhoGEF. Meth. Enzymol. 345, 371–382 (2002).

    Article  Google Scholar 

  27. Johnson, E.N. & Druey, K.M. Functional characterization of the G protein regulator RGS13. J. Biol. Chem. 277, 16768–16774 (2002).

    Article  CAS  Google Scholar 

  28. Nagata, Y., Oda, M., Nakata, H., Shozaki, Y., Kozasa, T. & Todokoro, K. A novel regulator of G protein signaling bearing GAP activity for Gαi and Gαq in megakaryocytes. Blood 97, 3051–3060 (2001).

    Article  CAS  Google Scholar 

  29. Kawamura, S., Miyamoto, S. & Brown, J.H. Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of Erk translocation. J. Biol. Chem. 278, 31111–31117 (2003).

    Article  CAS  Google Scholar 

  30. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Druey laboratory for discussions and D. Metcalfe for his support. This work was supported by the Division of Intra-Muro Research/National Institute of Health (E. N. J., K. M. D., A. A. W. and T. L. Z. J.), NIH grant GM36927 (J. H. B.) and an American HHeart Association, Scientist Development Grant (T. M. S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk M. Druey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 218 kb)

Supplementary Information, Fig. S3

Supplementary Information, Fig. S4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, E., Seasholtz, T., Waheed, A. et al. RGS16 inhibits signalling through the Gα13–Rho axis. Nat Cell Biol 5, 1095–1103 (2003). https://doi.org/10.1038/ncb1065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing