Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway

Abstract

Here we identify a new gene, dark, which encodes a Drosophila homologue of mammalian Apaf-1 and Caenorhabditis elegans CED-4, cell-death proteins. Like Apaf-1, but in contrast to CED-4, Dark contains a carboxy-terminal WD-repeat domain necessary for interactions with the mitochondrial protein cytochrome c. Dark selectively associates with another protein involved in apoptosis, the fly apical caspase, Dredd. Dark-induced cell killing is suppressed by caspase-inhibitory peptides and by a dominant-negative mutant Dredd protein, and enhanced by removal of the WD domain. Loss-of-function mutations in dark attenuate programmed cell deaths during development, causing hyperplasia of the central nervous system, and other abnormalities including ectopic melanotic tumours and defective wings. Moreover, ectopic cell killing by the Drosophila cell-death activators, Reaper, Grim and Hid, is substantially suppressed in dark mutants. These findings establish dark as an important apoptosis effector in Drosophila and raise profound evolutionary considerations concerning the relationship between mitochondrial components and the apoptosis-promoting machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The predicted amino-acid sequence of Dark and comparison to Apaf-1 and CED-4.
Figure 2: Dark-induced cell killing is suppressed by an active-site Dredd mutant.
Figure 3: Dark interacts with the fly apical caspase, Dredd, and cytochrome c.
Figure 4: Expression of dark during development.
Figure 5: dark loss-of-function phenotypes.
Figure 6: Reduced apoptosis in dark mutants.
Figure 7: Dark function is required for reaper-, grim-, and hid-induced cell death.

Similar content being viewed by others

References

  1. Jacobson, M. D., Weil, M. & Raff, M. C. Programmed cell death in animal development. Cell 88, 347–354 (1997).

    Article  CAS  Google Scholar 

  2. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    Article  CAS  Google Scholar 

  3. Yuan, J. & Horvitz, H. R. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320 (1992).

    CAS  PubMed  Google Scholar 

  4. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1B-converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  Google Scholar 

  5. Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994).

    Article  CAS  Google Scholar 

  6. Vaux, D. L. & Korsmeyer, S. J. Cell death in development. Cell 96, 245–254 (1999).

    Article  CAS  Google Scholar 

  7. Wu, D., Wallen, H. D. & Nunez, G. Interaction and regulation of subcellular localization of ced-4 by ced-9. Science 275, 1126–1129 (1997).

    Article  CAS  Google Scholar 

  8. Chinnaiyan, A., O’Rourke, K., Lane, B. R. & Dixit, V. M. Interaction of ced-4 with ced-3 and ced-9: a molecular framework for cell death. Science 275, 1122–1126 (1997).

    Article  CAS  Google Scholar 

  9. Spector, M. S., Desnoyers, S., Hoeppner, D. J. & Hengartner, M. O. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385, 653–656 (1997).

    Article  CAS  Google Scholar 

  10. Zou, H., Henzel, W. J., Liu, X. S., Lutschg, A. & Wang, X. D. Apaf-1, a human protein homologous to C-elegans ced-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    Article  CAS  Google Scholar 

  11. Srinivasula, S. M., Ahmad, M., Fernandesalnemri, T. & Alnemri, E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell 1, 949–957 (1998).

    Article  CAS  Google Scholar 

  12. Hu, Y. M., Ding, L. Y., Spencer, D. M. & Nunez, G. WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J. Biol. Chem. 273, 33489–33494 (1998).

    Article  CAS  Google Scholar 

  13. Yang, X. L., Chang, H. Y. & Baltimore, D. Essential role of Ced-4 oligomerization in Ced-3 activation and apoptosis. Science 281, 1355–1357 (1998).

    Article  CAS  Google Scholar 

  14. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  Google Scholar 

  15. Zou, H., Yuchen, L., Xuesong, L. & Wang, X. An APAF-1/cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556 (1999).

    Article  CAS  Google Scholar 

  16. White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 (1994).

    Article  CAS  Google Scholar 

  17. Chen, P., Nordstrom, W., Gish, B. & Abrams, J. M. grim, a novel cell death gene in Drosophila. Genes Dev. 10, 1773–1782 (1996).

    Article  CAS  Google Scholar 

  18. Grether, M. E., Abrams, J. M., Agapite, J., White, K. & Steller, H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694–1708 (1995).

    Article  CAS  Google Scholar 

  19. Song, Z. W., Mccall, K. & Steller, H. Dcp-1, a Drosophila cell death protease essential for development. Science 275, 536–540 (1997).

    Article  CAS  Google Scholar 

  20. Fraser, A. G. & Evan, G. I. Identification of a Drosophila melanogaster ICE/ced3-related protease, drICE. EMBO J. 16, 2805–2813 (1997).

    Article  CAS  Google Scholar 

  21. Chen, P., Rodriguez, A., Erskine, R., Thach, T. & Abrams, J. M. Dredd, a novel effector of the apoptosis activators Reaper, Grim, and Hid in Drosophila. Dev. Biol. 201, 202–216 (1998).

    Article  CAS  Google Scholar 

  22. Dorstyn, L., Colussi, P. A., Quinn, L. M., Richardson, H. & Kumar, S. DRONC, an ecdysone-inducible Drosophila caspase. Proc. Natl Acad. Sci. USA 96, 4307–4312 (1999).

    Article  CAS  Google Scholar 

  23. Inohara, N., Koseki, T., Hu, Y., Chen, S. & Nunez, G. CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Proc. Natl Acad. Sci. USA 94, 10717–10722 (1997).

    Article  CAS  Google Scholar 

  24. McCall, K. & Steller, H. Facing death in the fly: genetic analysis of apoptosis in Drosophila. Trends Genet. 13, 222–226 (1997).

    Article  CAS  Google Scholar 

  25. Rodriguez, A., Chen, P. & Abrams, J. M. Molecular prophets of death in the fly. Am. J. Hum. Genet. 62, 514–519 (1998).

    Article  CAS  Google Scholar 

  26. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).

    Article  CAS  Google Scholar 

  27. Van der Biezen, E. A. & Jones, J. D. G. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8, 226–227 (1998).

    Article  Google Scholar 

  28. Stultz, C. M., Lathrop, R. H. & White, J. V. in Protein Structural Biology in Bio-Medical Research (ed. Woodward, N.A.a.C.) 22B (JAI, Greenwich, 1997).

    Google Scholar 

  29. Hofmann, K. & Bucher, P. The Card domain — a new apoptotic signalling motif. Trends Biochem. Sci. 22, 155–156 (1997).

    Article  CAS  Google Scholar 

  30. Chou, J. J., Matsuo, H., Duan, H. & Wagner, G. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 94, 171–180 (1998).

    Article  CAS  Google Scholar 

  31. Kramer, H. & Phistry, M. Mutations in the Drosophila hook gene inhibit endocytosis of the boss transmembrane ligand into multivesicular bodies. J. Cell Biol. 133, 1–11 (1996).

    Article  Google Scholar 

  32. Reed, J. C. Cytochrome C — can’t live with it — can’t live without it. Cell 91, 559–562 (1997).

    Article  CAS  Google Scholar 

  33. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  Google Scholar 

  34. Varkey, J., Chen, P., Jemmerson, R. & Abrams, J. M. Altered cytochrome c display precedes apoptotic cell death in Drosophila. J. Cell Biol. 144, 701–710 (1999).

    Article  CAS  Google Scholar 

  35. Watson, K. L., Johnson, T. K. & Denell, R. E. Lethal(1)aberrant immune response mutations leading to melanotic tumor formation in Drosophila melanogaster. Dev. Genet. 12, 173–187 (1991).

    Article  CAS  Google Scholar 

  36. Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).

    Article  CAS  Google Scholar 

  37. Cecconi, F., Alvarezbolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf1 (Ced-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).

    Article  CAS  Google Scholar 

  38. Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95, 331–341 (1998).

    Article  CAS  Google Scholar 

  39. Kurada, P. & White, K. Ras promotes cell survival in Drosophila by downregulating Hid expression. Cell 95, 319–329 (1998).

    Article  CAS  Google Scholar 

  40. Wu, D. Y., Wallen, H. D., Inohara, N. & Nunez, G. Interaction and regulation of the Caenorhabditis elegans death protease ced-3 by ced-4 and ced-9. J. Biol. Chem. 272, 21449–21454 (1997).

    Article  CAS  Google Scholar 

  41. Hu, Y., Benedict, M. A., Wu, D., Inohara, N. & Nunez, G. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc. Natl Acad. Sci. USA 95, 4386–4391 (1998).

    Article  CAS  Google Scholar 

  42. Song, Q., Kuang, Y., Dixit, V. M. & Vincenz, C. Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J. 18, 167–178 (1999).

    Article  CAS  Google Scholar 

  43. Inohara, N. et al. Diva, a Bcl-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death. J. Biol. Chem. 273, 32479–32486 (1998).

    Article  CAS  Google Scholar 

  44. Poole, S. J., Kauvar, L. M., Drees, B. & Kornberg, T. The engrailed locus of Drosophila: structural analysis of an embryonic transcript. Cell 40, 37–43 (1985).

    Article  CAS  Google Scholar 

  45. Bunch, T. A., Grinblat, Y. & Goldstein, L. S. Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16, 1043–1061 (1988).

    Article  CAS  Google Scholar 

  46. Maniatis, T., Sambrook, J. & Fritsch, E. F. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1989).

    Google Scholar 

  47. Chen, P., Lee, P., Otto, L. & Abrams, J. M. Apoptotic activity of REAPER is distinct from signalling by the tumor necrosis factor receptor 1 death domain. J. Biol. Chem. 271, 25735–25737 (1996).

    Article  CAS  Google Scholar 

  48. Liu, X. S., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. D. Induction of apoptotic program in cell-free extracts — requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    Article  CAS  Google Scholar 

  49. Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster (Springer, Berlin, 1997).

    Book  Google Scholar 

  50. Rodriguez, A. et al. Identification of immune system and response genes, and novel mutations causing melanotic tumor formation in Drosophila melanogaster. Genetics 143, 929–940 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Chapo, S.I. Ho and Y. Li for technical expertise; C. Klingerberg and T. Barrientos for help with mutagenesis; G. Lawton for electron microscopy; J. Waddle for photographic help; the Bloomington stock center for fly strains; C. Thummel for cDNA libraries; A. Fraser and G. Evans for drICE plasmids; and J. Agapite and H. Steller for the P[GMR-hid]-1M strain. This work was supported by grants from the NIA/NIH (R01 AG12466) and the NSF (MCB-9816841) (to J.M.A.) and from the American Cancer Society (Re258), NIH (GMR01-57158) and Welch Foundation (I1412) to X.W.

Correspondence and requests for materials should be addressed to J.M.A. The Drosophila genomic region containing the dark gene is contained in DNA located in GenBank under accession number AC004335. The dark cDNA has been submitted to GenBank under accession number AF162659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Abrams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, A., Oliver, H., Zou, H. et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat Cell Biol 1, 272–279 (1999). https://doi.org/10.1038/12984

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12984

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing