Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Proteolysis: anytime, any place, anywhere?

Abstract

Proteolysis via the ubiquitin–proteasome system (UPS) is a rapid and effective method of degrading a specific protein at a specific time, and in many cases a protein is degraded only in response to a particular cellular signal or event. However, an added dimension to the control of protein degradation is possible because the ubiquitin system can be spatially regulated. Controlling where a protein is degraded can enhance the specificity and timing of proteolysis, generate asymmetry and maintain sub-compartments even in the mitotic cell. Here, we discuss this aspect of the UPS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Roles for localized proteolysis.

Similar content being viewed by others

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  2. Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    Article  CAS  Google Scholar 

  3. Voges, D., Zwickl, P. & Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068 (1999).

    Article  CAS  Google Scholar 

  4. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  5. Glickman, M. H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    Article  CAS  Google Scholar 

  6. Passmore, L. A. & Barford, D. Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem. J. 379, 513–525 (2004).

    Article  CAS  Google Scholar 

  7. Pintard, L., Willems, A. & Peter, M. Cullin-based ubiquitin ligases: Cul3–BTB complexes join the family. EMBO J. 23, 1681–1687 (2004).

    Article  CAS  Google Scholar 

  8. Kile, B. T. et al. The SOCS box: a tale of destruction and degradation. Trends Biochem. Sci. 27, 235–241 (2002).

    Article  CAS  Google Scholar 

  9. Hartmann-Petersen, R., Seeger, M. & Gordon, C. Transferring substrates to the 26S proteasome. Trends Biochem. Sci. 28, 26–31 (2003).

    Article  CAS  Google Scholar 

  10. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).

    Article  CAS  Google Scholar 

  11. Kleijnen, M. F. et al. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell 6, 409–419 (2000).

    Article  CAS  Google Scholar 

  12. Wilkinson, K. D. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin. Cell Dev. Biol. 11, 141–148 (2000).

    Article  CAS  Google Scholar 

  13. Peters, J. M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002).

    Article  CAS  Google Scholar 

  14. Vodermaier, H. C. APC/C and SCF: controlling each other and the cell cycle. Curr. Biol. 14, R787–R796 (2004).

    Article  CAS  Google Scholar 

  15. Melchior, F. SUMO — nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16, 591–626 (2000).

    Article  CAS  Google Scholar 

  16. Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000).

    Article  CAS  Google Scholar 

  17. Xie, Y. & Varshavsky, A. Physical association of ubiquitin ligases and the 26S proteasome. Proc. Natl Acad. Sci. USA 97, 2497–2502 (2000).

    Article  CAS  Google Scholar 

  18. Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507 (2002).

    Article  CAS  Google Scholar 

  19. Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991).

    Article  CAS  Google Scholar 

  20. Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615 (2002).

    Article  CAS  Google Scholar 

  21. Kostova, Z. & Wolf, D. H. For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J. 22, 2309–2317 (2003).

    Article  CAS  Google Scholar 

  22. Mayer, T. U., Braun, T. & Jentsch, S. Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J. 17, 3251–3257 (1998).

    Article  CAS  Google Scholar 

  23. Lee, R. J. et al. Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J. 23, 2206–2215 (2004).

    Article  CAS  Google Scholar 

  24. Swanson, R., Locher, M. & Hochstrasser, M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Genes Dev. 15, 2660–2674 (2001).

    Article  CAS  Google Scholar 

  25. Blondel, M. et al. Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4. EMBO J. 19, 6085–6097 (2000).

    Article  CAS  Google Scholar 

  26. Freedman, D. A. & Levine, A. J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18, 7288–7293 (1998).

    Article  CAS  Google Scholar 

  27. Yu, Z. K., Geyer, R. K. & Maki, C. G. MDM2-dependent ubiquitination of nuclear and cytoplasmic p53. Oncogene 19, 5892–5897 (2000).

    Article  CAS  Google Scholar 

  28. Xirodimas, D. P., Stephen, C. W. & Lane, D. P. Cocompartmentalization of p53 and Mdm2 is a major determinant for Mdm2-mediated degradation of p53. Exp. Cell Res. 270, 66–77 (2001).

    Article  CAS  Google Scholar 

  29. Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972–1975 (2003).

    Article  CAS  Google Scholar 

  30. Hara, T., Kamura, T., Nakayama, K., Oshikawa, K. & Hatakeyama, S. Degradation of p27(Kip1) at the G(0)–G(1) transition mediated by a Skp2-independent ubiquitination pathway. J. Biol. Chem. 276, 48937–48943 (2001).

    Article  CAS  Google Scholar 

  31. Connor, M. K. et al. CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol. Biol. Cell 14, 201–213 (2003).

    Article  CAS  Google Scholar 

  32. Kamura, T. et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nature Cell Biol. 6, 1229–1235 (2004).

    Article  CAS  Google Scholar 

  33. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    Article  CAS  Google Scholar 

  34. Tsvetkov, L. M., Yeh, K. H., Lee, S. J., Sun, H. & Zhang, H. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr. Biol. 9, 661–664 (1999).

    Article  CAS  Google Scholar 

  35. Furstenthal, L., Swanson, C., Kaiser, B. K., Eldridge, A. G. & Jackson, P. K. Triggering ubiquitination of a CDK inhibitor at origins of DNA replication. Nature Cell Biol. 3, 715–722. (2001).

    Article  CAS  Google Scholar 

  36. Mendez, J. et al. Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol. Cell 9, 481–491 (2002).

    Article  CAS  Google Scholar 

  37. Lew, D. J. The morphogenesis checkpoint: how yeast cells watch their figures. Curr. Opin. Cell Biol. 15, 648–653 (2003).

    Article  CAS  Google Scholar 

  38. McMillan, J. N. et al. The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle control of Swe1p degradation by Hsl1p and Hsl7p. Mol. Cell. Biol. 19, 6929–6939 (1999).

    Article  CAS  Google Scholar 

  39. Longtine, M. S. et al. Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol. Cell. Biol. 20, 4049–4061 (2000).

    Article  CAS  Google Scholar 

  40. Bartholomew, C. R., Woo, S. H., Chung, Y. S., Jones, C. & Hardy, C. F. Cdc5 interacts with the Wee1 kinase in budding yeast. Mol. Cell. Biol. 21, 4949–4959 (2001).

    Article  CAS  Google Scholar 

  41. McMillan, J. N., Theesfeld, C. L., Harrison, J. C., Bardes, E. S. & Lew, D. J. Determinants of Swe1p degradation in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 3560–3575 (2002).

    Article  CAS  Google Scholar 

  42. Musacchio, A. & Hardwick, K. G. The spindle checkpoint: structural insights into dynamic signalling. Nature Rev. Mol. Cell Biol. 3, 731–741 (2002).

    Article  CAS  Google Scholar 

  43. Huang, J. Y. & Raff, J. W. The dynamic localisation of the Drosophila APC/C: evidence for the existence of multiple complexes that perform distinct functions and are differentially localised. J. Cell Sci. 115, 2847–2856 (2002).

    CAS  PubMed  Google Scholar 

  44. Acquaviva, C., Herzog, F., Kraft, C. & Pines, J. The anaphase promoting complex/cyclosome is recruited to centromeres by the spindle assembly checkpoint. Nature Cell Biol. 6, 892–898 (2004).

    Article  CAS  Google Scholar 

  45. Vigneron, S. et al. Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol. Biol. Cell 15, 4584–4596 (2004).

    Article  CAS  Google Scholar 

  46. Clute, P. & Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nature Cell Biol. 1, 82–87 (1999).

    Article  CAS  Google Scholar 

  47. Huang, J. & Raff, J. W. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J. 18, 2184–2195 (1999).

    Article  CAS  Google Scholar 

  48. Wakefield, J. G., Huang, J. & Raff, J. W. Centrosomes have a role in regulating the destruction of cyclin B in early Drosophila embryos. Curr. Biol. 10, 1367–1370 (2000).

    Article  CAS  Google Scholar 

  49. Raff, J. W., Jeffers, K. & Huang, J. Y. The roles of Fzy/Cdc20 and Fzr/Cdh1 in regulating the destruction of cyclin B in space and time. J. Cell Biol. 157, 1139–1149 (2002).

    Article  CAS  Google Scholar 

  50. Mathe, E. et al. The E2-C vihar is required for the correct spatiotemporal proteolysis of cyclin B and itself undergoes cyclical degradation. Curr. Biol. 14, 1723–1733 (2004).

    Article  CAS  Google Scholar 

  51. Rieder, C. L. et al. Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc. Natl Acad. Sci. USA 94, 5107–5112 (1997).

    Article  CAS  Google Scholar 

  52. Lindon, C. & Pines, J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J. Cell Biol. 164, 233–241 (2004).

    Article  CAS  Google Scholar 

  53. Amsterdam, A., Pitzer, F. & Baumeister, W. Changes in intracellular localization of proteasomes in immortalized ovarian granulosa cells during mitosis associated with a role in cell cycle control. Proc. Natl Acad. Sci. USA 90, 99–103 (1993).

    Article  CAS  Google Scholar 

  54. Tugendreich, S., Tomkiel, J., Earnshaw, W. & Hieter, P. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81, 261–268 (1995).

    Article  CAS  Google Scholar 

  55. Kraft, C. et al. Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J. 22, 6598–6609 (2003).

    Article  CAS  Google Scholar 

  56. Blondel, M. et al. Degradation of Hof1 by SCF(Grr1) is important for actomyosin contraction during cytokinesis in yeast. EMBO J. 24, 1440–1452 (2005).

    Article  CAS  Google Scholar 

  57. Ehlers, M. D. Eppendorf 2003 prize-winning essay. Ubiquitin and the deconstruction of synapses. Science 302, 800–801 (2003).

    Article  CAS  Google Scholar 

  58. Riechmann, V., Gutierrez, G. J., Filardo, P., Nebreda, A. R. & Ephrussi, A. Par-1 regulates stability of the posterior determinant Oskar by phosphorylation. Nature Cell Biol. 4, 337–342 (2002).

    Article  CAS  Google Scholar 

  59. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).

    Article  CAS  Google Scholar 

  60. Wang, H. R. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003).

    Article  CAS  Google Scholar 

  61. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to our colleagues O. Coux, D. Lew, M. Scheffner and M. Peter for their helpful advice and to Cancer Research UK for financial support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pines, J., Lindon, C. Proteolysis: anytime, any place, anywhere?. Nat Cell Biol 7, 731–735 (2005). https://doi.org/10.1038/ncb0805-731

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0805-731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing