Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cooperation between mDia1 and ROCK in Rho-induced actin reorganization

Abstract

The small GTPase Rho induces the formation of actin stress fibres and mediates the formation of diverse actin structures. However, it remains unclear how Rho regulates its effectors to elicit such functions. Here we show that GTP-bound Rho activates its effector mDia1 by disrupting mDia1’s intramolecular interactions. Active mDia1 induces the formation of thin actin stress fibres, which are disorganized in the absence of activity of the Rho-associated kinase ROCK. Moreover, active mDia1 transforms ROCK-induced condensed actin fibres into structures reminiscent of Rho-induced stress fibres. Thus mDia1 and ROCK work concurrently during Rho-induced stress-fibre formation. Intriguingly, mDia1 and ROCK, depending on the balance of the two activities, induce actin fibres of various thicknesses and densities. Thus Rho may induce the formation of different actin structures affected by the balance between mDia1 and ROCK signalling.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: F-actin phenotypes of HeLa cells expressing random truncation mutants of mDia1.
Figure 2: Intramolecular interaction in mDia1 and competitive binding of RhoA and the C terminus of mDia1 to the N-terminal region of mDia1.
Figure 3: Phenotypes of HeLa cells expressing mDia1 mutants containing short truncations at the C terminus.
Figure 4: Detailed morphology of actin fibres in cells expressing constitutively active mDia1 and their disorganization under conditions of inactive Rho–ROCK signalling.
Figure 5: F-actin phenotypes of HeLa cells co-transfected with constitutively active mutants of mDia1 and ROCK at various plasmid ratios.
Figure 6: F-actin and focal adhesions induced by active ROCK and mDia1 in HeLa cells expressing the C3 exoenzyme.
Figure 7: Model for activation of mDia1 and two models for actin reorganization downstream of Rho

References

  1. Narumiya, S., Ishizaki, T. & Watanabe, N. Rho effectors and reorganization of actin cytoskeleton . FEBS Lett. 410, 68–72 (1997).

    Article  CAS  Google Scholar 

  2. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  3. Paterson, H. F. et al. Microinjection of recombinant p21rho induces rapid changes in cell morphology. J. Cell Biol. 111, 1001 –1007 (1990).

    Article  CAS  Google Scholar 

  4. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    Article  CAS  Google Scholar 

  5. Ridley, A. J., Comoglio, P. M. & Hall, A. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol. Cell. Biol. 15, 1110–1122 ( 1995).

    Article  CAS  Google Scholar 

  6. Ishizaki, T. et al. S. p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett. 404, 118–124 ( 1997).

    Article  CAS  Google Scholar 

  7. Kishi, K., Sasaki, T., Kuroda, S., Itoh, T. & Takai, Y. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J. Cell Biol. 120, 1187–1195 ( 1993).

    Article  CAS  Google Scholar 

  8. Mabuchi, I. et al. A rho-like protein is involved in the organisation of the contractile ring in dividing sand dollar eggs. Zygote 1, 325–331 (1993).

    Article  CAS  Google Scholar 

  9. Drechsel, D. N., Hyman, A. A., Hall, A. & Glotzer, M. A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr. Biol. 7, 12–23 ( 1997).

    Article  CAS  Google Scholar 

  10. Takaishi, K. et al. Translocation of activated Rho from the cytoplasm to membrane ruffling area, cell-cell adhesion sites & cleavage furrows. Oncogene 11, 39–48 ( 1995).

    CAS  PubMed  Google Scholar 

  11. Adam, T., Giry, M., Boquet, P. & Sansonetti, P. Rho-dependent membrane folding causes Shigella entry into epithelial cells. EMBO J. 15, 3315–3321 ( 1996).

    Article  CAS  Google Scholar 

  12. Menard, R., Prevost, M. C., Gounon, P., Sansonetti, P. & Dehio, C. The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells. Proc. Natl Acad. Sci. USA 93, 1254–1258 ( 1996).

    Article  CAS  Google Scholar 

  13. Watarai, M., Kamata, Y., Kozaki, S. & Sasakawa, C. rho, a small GTP-binding protein, is essential for Shigella invasion of epithelial cells. J. Exp. Med. 185, 281– 292 (1997).

    Article  CAS  Google Scholar 

  14. Sekine, A., Fujiwara, M. & Narumiya, S. Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J. Biol. Chem. 264, 8602–8605 (1989).

    CAS  PubMed  Google Scholar 

  15. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 ( 1997).

    Article  CAS  Google Scholar 

  16. Leung, T., Chen, X. Q., Manser, E. & Lim, L. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 16, 5313–5327 (1996).

    Article  CAS  Google Scholar 

  17. Amano, M. et al. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275, 1308– 1311 (1997).

    Article  CAS  Google Scholar 

  18. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245– 248 (1996).

    Article  CAS  Google Scholar 

  19. Somlyo, A.P. Rhomantic interludes raise blood pressure. Nature 389 , 908–911 (1997).

    Article  CAS  Google Scholar 

  20. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    Article  CAS  Google Scholar 

  21. Castrillon, D. H. & Wasserman, S. A. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 120, 3367–3377 ( 1994).

    CAS  PubMed  Google Scholar 

  22. Frazier, J. A. & Field, C. M. Actin cytoskeleton: are FH proteins local organizers? Curr. Biol. 7, R414–R417 (1997).

    Article  CAS  Google Scholar 

  23. Wasserman, S. FH proteins as cytoskeletal organizers. Trends Cell Biol. 8, 111–115 (1998).

    Article  CAS  Google Scholar 

  24. Carlier, M. F. & Pantaloni, D. Control of actin dynamics in cell motility. J. Mol. Biol. 269, 459–467 (1997).

    Article  CAS  Google Scholar 

  25. Schluter, K., Jockusch, B. M. & Rothkegel, M. Profilins as regulators of actin dynamics. Biochim. Biophys. Acta 1359, 97–109 (1997).

    Article  CAS  Google Scholar 

  26. Lynch, E. D. et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278, 1315–1318 ( 1997).

    Article  CAS  Google Scholar 

  27. Madaule, P. et al. Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394, 491– 494 (1998).

    Article  CAS  Google Scholar 

  28. Hirose, M. et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J. Cell Biol. 141, 1625–1636 (1998).

    Article  CAS  Google Scholar 

  29. Alberts, A. S., Bouquin, N., Johnston, L. H. & Treisman, R. Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7. J. Biol. Chem. 273, 8616– 8622 (1998).

    Article  CAS  Google Scholar 

  30. Sahai, E., Alberts, A. S. & Treisman, R. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J. 17, 1350–1361 ( 1998).

    Article  CAS  Google Scholar 

  31. Kohno, H. et al. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15, 6060–6068 ( 1996).

    Article  CAS  Google Scholar 

  32. Evangelista, M. et al. Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122 (1997).

    Article  CAS  Google Scholar 

  33. Jalink, K. et al. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126, 801– 810 (1994).

    Article  CAS  Google Scholar 

  34. Chan, D. C. & Leder, P. Genetic evidence that formins function within the nucleus. J. Biol. Chem. 271, 23472–23477 (1996).

    Article  CAS  Google Scholar 

  35. Witke, W. et al. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J. 17, 967–976 (1998).

    Article  CAS  Google Scholar 

  36. Fujiwara, T. et al. Rho1p-Bni1p-Spa2p interactions: implication in localization of Bni1p at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 1221– 1233 (1998).

    Article  CAS  Google Scholar 

  37. Umikawa, M. et al. Interaction of Rho1p target Bni1p with F-actin-binding elongation factor 1alpha: implication in Rho1p-regulated reorganization of the actin cytoskeleton in Saccharomyces cerevisiae. Oncogene 16, 2011–2016 (1998).

    Article  CAS  Google Scholar 

  38. Petersen, J., Nielsen, O., Egel, R. & Hagan, I. M. FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation. J. Cell Biol. 141, 1217–1228 (1998).

    Article  Google Scholar 

  39. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP . Nature 391, 93–96 (1998).

    Article  CAS  Google Scholar 

  40. Machesky, L. M. & Hall, A. Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J. Cell Biol. 138, 913– 926 (1997).

    Article  CAS  Google Scholar 

  41. Woychik, R.P., Maas, R.L., Zeller, R., Vogt, T.F. & Leder, P. ‘Formins’: proteins deduced from the alternative transcripts of the limb deformity gene. Nature 346, 850–853 (1990).

    Article  CAS  Google Scholar 

  42. Bione, S. et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am. J. Hum. Genet. 62, 533–541 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Nonomura for technical assistance; T. Arai and H. Nose for secretarial assistance; and H. A. Popiel for editing the manuscript. N.W. was supported by a JSPS Fellowship in Cancer Research for Young Scientists. This work was supported in part by a Grant-in-Aid for Specially Promoted Research (08102007) from the Ministry of Education, Science, Sports, and Culture of Japan, and by the Human Frontier Science Program.

Correspondence and requests for materials should be addressed to S.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuh Narumiya.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Watanabe, N., Kato, T., Fujita, A. et al. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization . Nat Cell Biol 1, 136–143 (1999). https://doi.org/10.1038/11056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11056

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing