Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly

Abstract

The small GTPase Ran is a key regulator of nucleocytoplasmic transport during interphase. The asymmetric distribution of the GTP-bound form of Ran across the nuclear envelope — that is, large quantities in the nucleus compared with small quantities in the cytoplasm — determines the directionality of many nuclear transport processes. Recent findings that Ran also functions in spindle formation and nuclear envelope assembly during mitosis suggest that Ran has a general role in chromatin-centred processes. Ran functions in these events as a signal for chromosome position.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ran can affect multiple spindle targets.
Figure 2: Steps of nuclear envelope (NE) formation in vitro.
Figure 3: Model of nuclear envelope (NE) formation.
Figure 4: RanGTP as a marker of chromosome position.

Similar content being viewed by others

References

  1. Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265–306 (1998).

    CAS  PubMed  Google Scholar 

  2. Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    PubMed  Google Scholar 

  3. Ohtsubo, M. et al. Isolation and characterization of the active cDNA of the human cell cycle gene (RCC1) involved in the regulation of onset of chromosome condensation. Genes Dev. 1, 585–593 (1987).

    CAS  PubMed  Google Scholar 

  4. Ohtsubo, M., Okazaki, H. & Nishimoto, T. The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. J. Cell Biol. 109, 1389–1397 (1989).

    CAS  PubMed  Google Scholar 

  5. Bischoff, F. R. & Ponstingl, H. Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide. Proc. Natl Acad. Sci. USA 88, 10830–10834 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Klebe, C., Bischoff, F. R., Ponstingl, H. & Wittinghofer, A. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34, 639–647 (1995).

    CAS  PubMed  Google Scholar 

  7. Bischoff, F. R., Klebe, C., Kretschmer, J., Wittinghofer, A. & Ponstingl, H. RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc. Natl Acad. Sci. USA 91, 2587–2591 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bischoff, F. R., Krebber, H., Smirnova, E., Dong, W. & Ponstingl, H. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J. 14, 705–715 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yokoyama, N. et al. A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188 (1995).

    CAS  PubMed  Google Scholar 

  10. Matunis, M. J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470. (1996).

    CAS  PubMed  Google Scholar 

  11. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107 (1997).

    CAS  PubMed  Google Scholar 

  12. Kuersten, S., Ohno, M. & Mattaj, I. W. Nucleocytoplasmic transport: Ran, beta and beyond. Trends Cell Biol. 11, 497–503 (2001).

    CAS  PubMed  Google Scholar 

  13. Terasaki, M. Dynamics of the endoplasmic reticulum and Golgi apparatus during early sea urchin development. Mol. Biol. Cell 11, 897–914 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wittmann, T., Hyman, A. & Desai, A. The spindle: a dynamic assembly of microtubules and motors. Nature Cell Biol. 3, E28–E34 (2001).

    CAS  PubMed  Google Scholar 

  15. Walczak, C. E. Ran hits the ground running. Nature Cell Biol. 3, E69–E70 (2001).

    CAS  PubMed  Google Scholar 

  16. Desai, A. & Hyman, A. Microtubule cytoskeleton: No longer an also Ran. Curr. Biol. 9, R704–R707 (1999).

    CAS  PubMed  Google Scholar 

  17. Kahana, J. A. & Cleveland, D. W. Beyond nuclear transport. Ran-GTP as a determinant of spindle assembly. J. Cell Biol. 146, 1205–1210 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalab, P., Pu, R. T. & Dasso, M. The Ran GTPase regulates mitotic spindle assembly. Curr. Biol. 9, 481–484 (1999).

    CAS  PubMed  Google Scholar 

  19. Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359–1362 (1999).

    CAS  PubMed  Google Scholar 

  20. Ohba, T., Nakamura, M., Nishitani, H. & Nishimoto, T. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284, 1356–1358 (1999).

    CAS  PubMed  Google Scholar 

  21. Carazo-Salas, R. E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178–181 (1999).

    CAS  PubMed  Google Scholar 

  22. Kalab, P., Weis, K. & Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295, 2452–2456 (2002).

    CAS  PubMed  Google Scholar 

  23. Bilbao-Cortes, D., Hetzer, M., Laengst, G., Becker, P. & Mattaj, I. W. Ran binds to chromatin by two distinct mechanisms. Curr. Biol. (in the press).

  24. Hinkle, B. et al. Chromosomal association of Ran during meiotic and mitotic divisions. (submitted).

  25. Gruss, O. J. et al. Ran induces spindle assembly by reversing the inhibitory effect of Importin α on TPX2 activity. Cell 104, 83–93 (2001).

    CAS  PubMed  Google Scholar 

  26. Nachury, M. V. et al. Importin β is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95–106 (2001).

    CAS  PubMed  Google Scholar 

  27. Wiese, C. et al. Role of Importin-β in coupling Ran to downstream targets in microtubule assembly. Science 291, 653–656 (2001).

    CAS  PubMed  Google Scholar 

  28. Haren, L. & Merdes, A. Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules. J. Cell Sci. 115, 1815–1824 (2002).

    CAS  PubMed  Google Scholar 

  29. Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996).

    CAS  PubMed  Google Scholar 

  31. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, a novel Xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Guarguaglini, G. et al. Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo. Cell Growth Differ. 11, 455–465 (2000).

    CAS  PubMed  Google Scholar 

  33. Nishimoto, T., Eilen, E. & Basilico, C. Premature of chromosome condensation in a ts DNA-mutant of BHK cells. Cell 15, 475–483 (1978).

    CAS  PubMed  Google Scholar 

  34. Compton, D. A. & Cleveland, D. W. NuMA is required for the proper completion of mitosis. J. Cell Biol. 120, 947–957 (1993).

    CAS  PubMed  Google Scholar 

  35. Richards, S. A., Carey, K. L. & Macara, I. G. Requirement of guanosine triphosphate-bound ran for signal-mediated nuclear protein export. Science 276, 1842–1844 (1997).

    CAS  PubMed  Google Scholar 

  36. Fleig, U., Salus, S. S., Karig, I. & Sazer, S. The fission yeast ran GTPase is required for microtubule integrity. J. Cell Biol. 151, 1101–1111 (2001).

    Google Scholar 

  37. Bamba, C., Bobinnec, Y., Fukuda, M. & Nishida, E. The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo. Curr. Biol. 12, 503–507 (2002).

    CAS  PubMed  Google Scholar 

  38. Carazo-Salas, R. E., Gruss, O. J., Mattaj, I. W. & Karsenti, E. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nature Cell Biol. 3, 228–234 (2001).

    CAS  PubMed  Google Scholar 

  39. Wilde, A. et al. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nature Cell Biol. 3, 221–227 (2001).

    CAS  PubMed  Google Scholar 

  40. Ray, K. et al. Kinesin-II is required for axonal transport of choline acetyltransferase in Drosophila. J. Cell Biol. 147, 507–518 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lange, B. M. Integration of the centrosome in cell cycle control, stress response and signal transduction pathways. Curr. Opin. Cell Biol. 14, 35–43 (2002).

    CAS  PubMed  Google Scholar 

  42. Fry, A. M., Descombes, P., Twomey, C., Bacchieri, R. & Nigg, E. A. The NIMA-related kinase X-Nek2B is required for efficient assembly of the zygotic centrosome in Xenopus laevis. J. Cell Sci. 113, 1973–1984 (2000).

    CAS  PubMed  Google Scholar 

  43. Hannak, E., Kirkham, M., Hyman, A. A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155, 1109–1116 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Giet, R. & Glover, D. M. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol. 152, 669–682 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. do Carmo Avides, M., Tavares, A. & Glover, D. M. Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nature Cell Biol. 3, 421–424 (2001).

    CAS  PubMed  Google Scholar 

  46. Terasaki, M. Dynamics of the endoplasmic reticulum and Golgi apparatus during early sea urchin development. Mol. Biol. Cell 11, 897–914 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marshall, I. C. B. & Wilson, K. L. Nuclear envelope assembly after mitosis. Trends Cell Biol. 7, 69–74 (1997).

    CAS  PubMed  Google Scholar 

  48. Wiese, C. & Wilson, K. L. Nuclear membrane dynamics. Curr. Opin. Cell Biol. 5, 387–394 (1993).

    CAS  PubMed  Google Scholar 

  49. Franke, W. W., Scheer, U., Krohne, G. & Jarasch, E. D. The nuclear envelope and the architecture of the nuclear periphery. J. Cell Biol. 91, 39s–50s (1981).

    CAS  PubMed  Google Scholar 

  50. Powell, K. S. & Latterich, M. The making and breaking of the endoplasmic reticulum. Traffic 1, 689–694 (2001).

    Google Scholar 

  51. Holmer, L. & Worman, H. J. Inner nuclear membrane proteins: functions and targeting. Cell. Mol. Life Sci. 58, 1741–1747 (2001).

    CAS  PubMed  Google Scholar 

  52. Stuurman, N., Heins, S. & Aebi, U. Nuclear lamins: their structure, assembly, and interactions. J. Struct. Biol. 122, 42–66 (1998).

    CAS  PubMed  Google Scholar 

  53. Gruenbaum, Y., Wilson, K. L., Harel, A., Goldberg, M. & Cohen, M. Review: nuclear lamins — structural proteins with fundamental functions. J. Struct. Biol. 129, 313–323 (2001).

    Google Scholar 

  54. Gerace, L. & Burke, B. Functional organization of the nuclear envelope. Annu. Rev. Cell Biol. 4, 335–374 (1988).

    CAS  PubMed  Google Scholar 

  55. Hallberg, E., Wozniak, R. W. & Blobel, G. An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J. Cell Biol. 122, 513–521 (1993).

    CAS  PubMed  Google Scholar 

  56. Reichelt, R. et al. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell Biol. 110, 883–894 (1990).

    CAS  PubMed  Google Scholar 

  57. Adam, S. A. The nuclear pore complex. Genome Biol. 2, 47–53 (2001).

    Google Scholar 

  58. Doye, V. & Hurt, E. From nucleoporins to nuclear pore complexes. Curr. Opin. Cell Biol. 9, 401–411 (1997).

    CAS  PubMed  Google Scholar 

  59. Aitchison, J. D. & Rout, M. P. A tense time for the nuclear envelope. Cell 108, 301–304 (2002).

    CAS  PubMed  Google Scholar 

  60. Courvalin, J. C., Segil, N., Blobel, G. & Worman, H. J. The lamin B receptor of the inner nuclear membrane undergoes mitosis-specific phosphorylation and is a substrate for p34cdc2-type protein kinase. J. Biol. Chem. 267, 19035–19038 (1992).

    CAS  PubMed  Google Scholar 

  61. Fields, A. P. & Thompson, L. J. The regulation of mitotic nuclear envelope breakdown: a role for multiple lamin kinases. Prog. Cell Cycle Res. 1, 271–286 (1995).

    CAS  PubMed  Google Scholar 

  62. Salina, D. et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97–107 (2002).

    CAS  PubMed  Google Scholar 

  63. Beaudouin, J., Gerlich, D., Daigle, N., Eils, R. & Ellenberg, J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108, 83–96 (2002).

    CAS  PubMed  Google Scholar 

  64. Burke, B. & Ellenberg, J. Remodeling the walls of the nucleus. Nature Rev. Mol. Cell Biol. (in the press).

  65. Newport, J. & Spann, T. Disassembly of the nucleus in mitotic extracts: membrane vesicularization, lamin disassembly, and chromosome condensation are independent processes. Cell 48, 219–230 (1987).

    CAS  PubMed  Google Scholar 

  66. Vigers, G. P. & Lohka, M. J. A distinct vesicle population targets membranes and pore complexes to the nuclear envelope in Xenopus eggs. J. Cell Biol. 112, 545–556 (1991).

    CAS  PubMed  Google Scholar 

  67. Collas, P. & Poccia, D. Distinct egg membrane vesicles differing in binding and fusion properties contribute to sea urchin male pronuclear envelopes formed in vitro. J. Cell Sci. 109, 1275–1283 (1996).

    CAS  PubMed  Google Scholar 

  68. Drummond, S. et al. Temporal differences in the appearance of NEP-B78 and a LBR-like protein during Xenopus nuclear envelope reassembly reflect the order recruitment of functionally discrete vesicle types. J. Cell Biol. 144, 225–240 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sasagawa, S., Yamamoto, A., Ichimura, T., Omata, S. & Horigome, T. In vitro nuclear assembly with affinity-purified nuclear precursor vesicle fractions, PV1 and PV2. Eur. J. Cell Biol. 78, 593–600 (1999).

    CAS  PubMed  Google Scholar 

  70. Lourim, D. & Krohne, G. Membrane-associated lamins in Xenopus egg extracts: identification of two vesicle populations. J. Cell Biol. 123, 501–152 (1993).

    CAS  PubMed  Google Scholar 

  71. Buendia, B., Courvalin, J. C. Domain-specific disassembly and reassembly of nuclear membranes during mitosis. Exp. Cell Res. 230, 133–144 (1997).

    CAS  PubMed  Google Scholar 

  72. Collas, P. & Courvalin, J. C. Sorting nuclear membrane proteins at mitosis. Trends Cell Biol. 10, 5–8 (2000).

    CAS  PubMed  Google Scholar 

  73. Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang, L., Guan, T. & Gerace, L. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J. Cell Biol. 137, 1199–1210 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zaal, K. J. et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 99, 589–601 (1999).

    CAS  PubMed  Google Scholar 

  76. Collas, P. & Poccia, D. Membrane fusion events during nuclear envelope assembly. Subcell. Biochem. 34, 273–302 (2000).

    CAS  PubMed  Google Scholar 

  77. Gant, T. M. & Wilson, K. L. Nuclear assembly. Annu. Rev. Cell Dev. Biol. 13, 669–695 (1997).

    CAS  PubMed  Google Scholar 

  78. Wiese, C., Goldberg, M. W., Allen, T. D. & Wilson, K. L. Nuclear envelope assembly in Xenopus extracts visualized by scanning EM reveals a transport-dependent 'envelope smoothing' event. J. Cell Sci. 110, 1489–1502 (1997).

    CAS  PubMed  Google Scholar 

  79. Hetzer, M. et al. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nature Cell Biol. 3, 1086–1091 (2001).

    CAS  PubMed  Google Scholar 

  80. Wilson, K. L. & Wiese, C. Reconstituting the nuclear envelope and endoplasmic reticulum in vivo. Semin. Cell Dev. Biol. 7, 487–496 (1996).

    Google Scholar 

  81. Poccia, D. & Collas, P. Nuclear envelope dynamics during male pronuclear development. Dev. Growth Differ. 39, 541–550 (1997).

    CAS  PubMed  Google Scholar 

  82. Philpott, A., Leno, G. H. & Laskey, R. A. Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell 65, 569–578 (1991).

    CAS  PubMed  Google Scholar 

  83. Philpott, A. & Leno, G. H. Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell 69, 759–767 (1992).

    CAS  PubMed  Google Scholar 

  84. Wilson, K. L. & Newport, J. A trypsin-sensitive receptor on membrane vesicles is required for nuclear envelope formation in vitro. J. Cell Biol. 107, 57–68 (1988).

    CAS  PubMed  Google Scholar 

  85. Newport, J. & Dunphy, W. Characterization of the membrane binding and fusion events during nuclear envelope assembly using purified components. J. Cell Biol. 116, 295–306 (1992).

    CAS  PubMed  Google Scholar 

  86. Vasu, S. K & Forbes D. J. Nuclear pores and nuclear assembly. Curr. Opin. Cell Biol. 13, 363–375 (2001).

    CAS  PubMed  Google Scholar 

  87. Macaulay, C. & Forbes, D. J. Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTPγS, and BAPTA. J. Cell Biol. 132, 5–20 (1996).

    CAS  PubMed  Google Scholar 

  88. Boman, A. L., Delannoy, M. R. & Wilson, K. L. GTP hydrolysis is required for vesicle fusion during nuclear envelope assembly in vitro. J. Cell Biol. 116, 281–294 (1992).

    CAS  PubMed  Google Scholar 

  89. Lohka, M. J. & Masui, Y. Roles of cytosol and cytoplasmic particles in nuclear envelope assembly and sperm pronuclear formation in cell-free preparations from amphibian eggs. J. Cell Biol. 98, 1222–1230 (1984).

    CAS  PubMed  Google Scholar 

  90. Benavente, R., Dabauvalle, M. C., Scheer, U. & Chaly, N. Functional role of newly formed pore complexes in postmitotic nuclear reorganization. Chromosoma 98, 233–241 (1989).

    CAS  PubMed  Google Scholar 

  91. Newport, J. W., Wilson, K. L. & Dunphy, W. G. A lamin-independent pathway for nuclear envelope assembly. J. Cell Biol. 111, 2247–2259 (1990).

    CAS  PubMed  Google Scholar 

  92. Collas, P., Courvalin, J. C. & Poccia, D. Targeting of membranes to sea urchin sperm chromatin is mediated by a lamin B receptor-like integral membrane protein. J. Cell Biol. 135, 1715–1725 (2000).

    Google Scholar 

  93. Collas, P. Formation of the sea urchin male pronucleus in cell-free extracts. Mol. Reprod. Dev. 56, 265–270 (2000).

    CAS  PubMed  Google Scholar 

  94. Dabauvalle, M. C., Loos, K., Merkert, H. & Scheer, U. Spontaneous assembly of pore complex-containing membranes ('annulate lamellae') in Xenopus egg extract in the absence of chromatin. J. Cell Biol. 112, 1073–1082 (1991).

    CAS  PubMed  Google Scholar 

  95. Hetzer, M., Bilbao-Cortes, D., Walther, T. C., Gruss, O. J. & Mattaj I. W. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol. Cell 5, 1013–1024 (2000).

    CAS  PubMed  Google Scholar 

  96. Zhang, C. & Clarke, P. R. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 288, 1429–1432 (2000).

    CAS  PubMed  Google Scholar 

  97. Zhang, C. & Clarke, P. R. Roles of Ran-GTP and Ran-GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system. Curr. Biol. 11, 208–212 (2001).

    CAS  PubMed  Google Scholar 

  98. Zhang, C., Hutchins, J. R., Muhlhausser, P., Kutay, U. & Clarke, P. R. Role of Importin-β in the control of nuclear envelope sssembly by Ran. Curr. Biol. 12, 498–502 (2002).

    CAS  PubMed  Google Scholar 

  99. Dreier, L. & Rapoport, T. A. In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction. J. Cell Biol. 148, 883–898 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Daigle, N. et al. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol. 154, 71–84 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Burke, B. The nuclear envelope: filling in gaps. Nature Cell Biol. 3, E273–E274 (2001).

    CAS  PubMed  Google Scholar 

  102. Gant, T. M., Harris, C. A. & Wilson, K. L. Roles of LAP2 proteins in nuclear assembly and DNA replication: truncated LAP2β proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopus laevis extracts. J. Cell Biol. 144, 1083–1096 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Foisner, R. & Gerace, L. Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73, 1267–1279 (1993).

    CAS  PubMed  Google Scholar 

  104. Georgatos, S. D. & Theodoropoulos, P. A. Rules to remodel by: what drives nuclear envelope disassembly and reassembly during mitosis? Crit. Rev. Eukaryot. Gene Expr. 9, 373–381 (1999).

    CAS  PubMed  Google Scholar 

  105. Patel, S. & Latterich, M. The AAA team: related ATPases with diverse functions. Trends Cell Biol. 8, 65–71 (1998).

    CAS  PubMed  Google Scholar 

  106. Kondo, H. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75–78 (1997).

    CAS  PubMed  Google Scholar 

  107. Roy, L. et al. Role of p97 and syntaxin 5 in the assembly of transitional endoplasmic reticulum. Mol. Biol. Cell 11, 2529–2542 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Rabouille, C. et al. Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92, 603–610 (1998).

    CAS  PubMed  Google Scholar 

  109. Hitchcock, A. L. et al. The conserved npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol. Biol. Cell 12, 3226–3241 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677 (2001).

    CAS  PubMed  Google Scholar 

  111. Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian Ufd1 and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Latterich, M., Frohlich, K. U. & Schekman, R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82, 885–893 (1995).

    CAS  PubMed  Google Scholar 

  113. Ye, Y., Meyer, H. H. & Rapoport, T. A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001).

    CAS  PubMed  Google Scholar 

  114. Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biol. 4, 134–139 (2002).

    CAS  PubMed  Google Scholar 

  115. DeHoratius, C. & Silver, P. A. Nuclear transport defects and nuclear envelope alterations are associated with mutation of the Saccharomyces cerevisiae NPL4 gene. Mol. Biol. Cell 7, 1835–1855 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Whaley, W. G. in Cell Biology Monographs, Continuation of Protoplasmatologia, Vol. 2 (Springer, Wien, New York, 1975).

    Google Scholar 

  117. Rossanese, O. W. et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J. Cell Biol. 145, 68–81 (1999).

    Google Scholar 

  118. Patel, S. K., Indig, F. E, Olivieri, N., Levine, N. D. & Latterich, M. Organelle membrane fusion: a novel function for the syntaxin homolog Ufe1p in ER membrane fusion. Cell 92, 611–620 (1998).

    CAS  PubMed  Google Scholar 

  119. Braun, S., Matuschewski, K., Rape, M., Thoms, S. & Jentsch, S. Role of the ubiquitin-selective CDC48(UFD1/NPL4) chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J. 21, 615–619 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Nemergut, M. E., Mizzen, C. A., Stukenberg, T., Allis, C. D. & Macara, I. G. Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B. Science 292, 1540–1543 (2001).

    CAS  PubMed  Google Scholar 

  121. Sazer, S. & Dasso M. The ran decathlon: multiple roles of Ran. J. Cell Sci. 113, 1111–1118 (2000).

    CAS  PubMed  Google Scholar 

  122. Moore, J. D. The Ran-GTPase and cell-cycle control. BioEssays 23, 77–85 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Antonin, P. Askjaer, R. Carazo-Salas, J. Ellenberg, V. Hachet and T. Walther for critical reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain W. Mattaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetzer, M., Gruss, O. & Mattaj, I. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat Cell Biol 4, E177–E184 (2002). https://doi.org/10.1038/ncb0702-e177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0702-e177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing